

Robotik I: Einführung in die Robotik Kapitel 8 – Grundlagen des Greifens

Tamim Asfour

http://www.humanoids.kit.edu

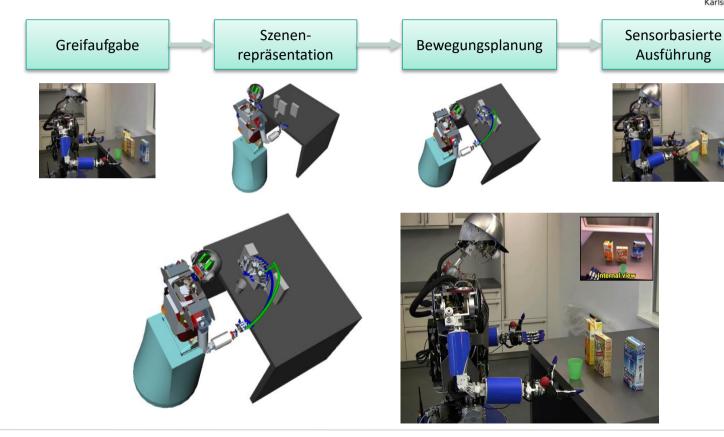
Inhalt

Motivation

Grifftaxonomien

- Kontaktmodelle und Grasp-Wrench-Space
- Greifplanung und Griffsynthese
- Beispiele: Greifen mit ARMAR

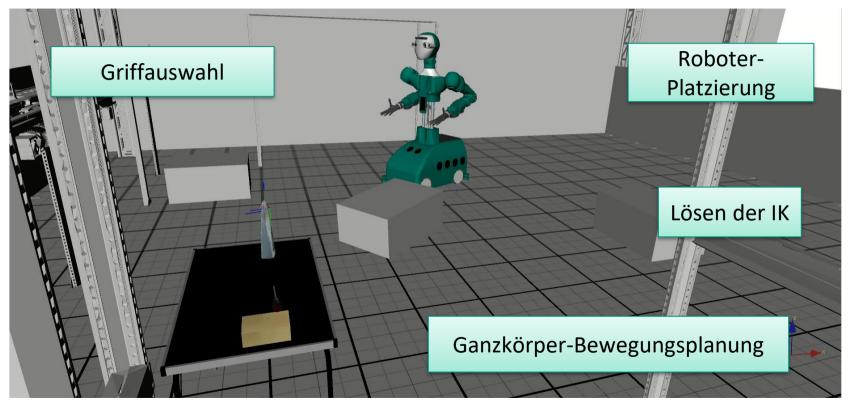
Inhalt


Motivation

- Grifftaxonomien
- Kontaktmodelle und Grasp-Wrench-Space
- Greifplanung und Griffsynthese
- Beispiele: Greifen mit ARMAR

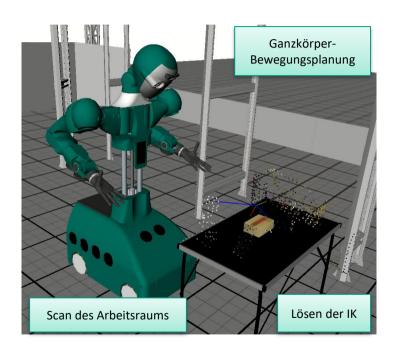
Motivation

Motivation – Greifen

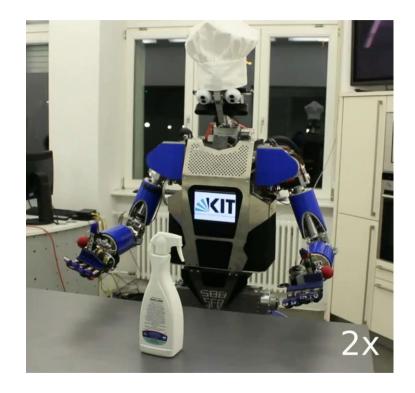


Motivation – Mobile Manipulation

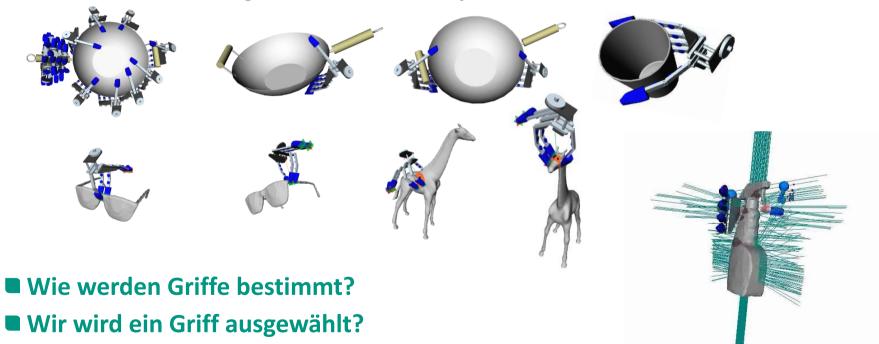
Motivation – Mobile Manipulation



Motivation – Greifen in teilweise unbekannten Umgebungen



Motivation – Umgreifen

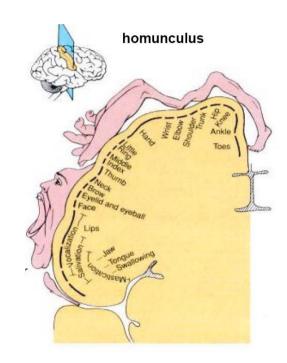


Motivation – Bestimmung und Auswahl von Griffen

■ Unendliche Griffmöglichkeiten eines Objekts

Motivation – Bestimmung und Auswahl von Griffen

- Welche Information ist entscheidend?
 - Geometrie/Form der Objekte
 - Interaktionskräfte zwischen Finger und Objekt
 - Kinematik der Hand
- Greifen bedeutet Kontakt zwischen Hand und Objekt
- Vorlesung Robotik I
 - Grundlagen des Greifens bekannter Objekte
- Vorlesung Robotik II
 - Fortgeschrittene Methoden des Greifens (ähnlicher und unbekannter) Objekte



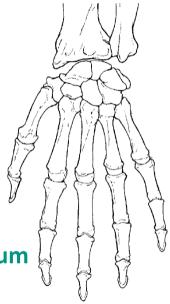
Motivation – Greifen beim Menschen

Karlsruher Institut für Technologie

- Greifen als Reglungs- und Steuerungsproblem
 - Vieles ist bekannt

- Kognitive Aspekte des Greifens
 - Wenig ist bekannt
 - Großer Teil des menschlichen Kortex ist der Hand gewidmet
 - Understanding hands = Understanding Intelligence (?)

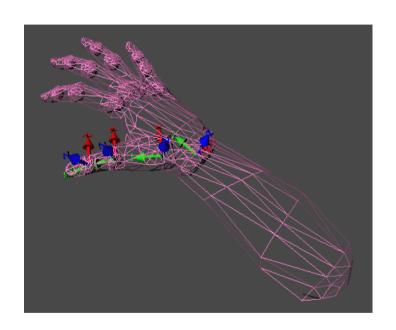
https://harmonicresolution.com/homunculus1.jpeg

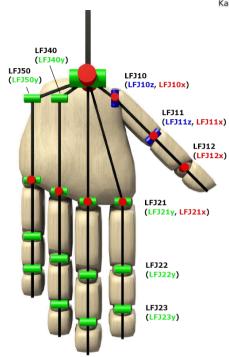


Die menschliche Hand

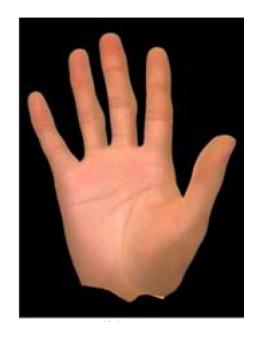
Karlsruher Institut für Technologie

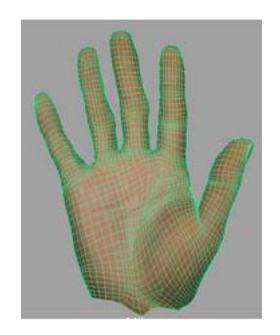
- 27 Knochen
- 21 Bewegungsfreiheitsgrade (DoF)
 - 3 DoF Flexion/Extension pro Finger
 - 1 DoF Abduktion/Adduktion pro Finger
 - 5 DoF Daumen
 - 3 DoF Flexion/Eextension
 - 2 DoF Abduktion/Adduktion
 - 6 DoF für die Handwurzel (Handfläche)
- Insgesamt: 21 + 6 = 27 DoF \Rightarrow hochdimensionaler Konfigurationsraum
- Modellierung:
 - Kinematische Modell
 - Flächenbasiertes Geometriemodell


U. Schmidt, Hans-Martin; Lanz. Chirurgische Anatomie der Hand. Stuttgart, New York, 2003. Georg Thieme Verlag



Kinematisches Modell




C. Mandery, Ö. Terlemez, M. Do, N. Vahrenkamp, T. Asfour, Unifying Representations and Large-Scale Whole-Body Motion Databases for Studying Human Motion, IEEE Transactions on Robotics 2016

Flächenbasiertes Geometriemodell

T. Rhee, U. Neumann, J. P. Lewis. Human hand modeling from surface anatomy. Symposium on Interactive 3D Graphics and Games (I3D '06), 2006. DOI: https://doi.org/10.1145/1111411.1111417

MMM Model

Die menschliche Hand

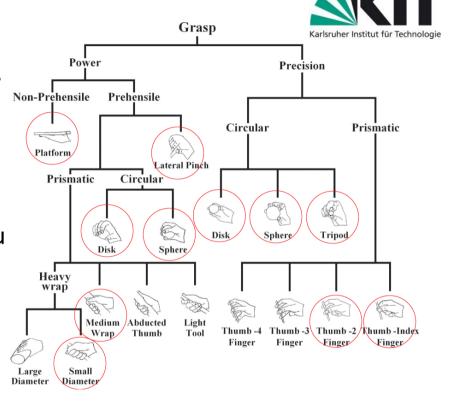
- Hochdimensionaler Konfigurationsraum
- Wie kann man die Komplexität des Problems reduzieren?
 - Einschränkung/Strukturierung des Konfigurationsraum durch die Einführung von Griffkategorien → Grifftaxonomien

Inhalt

Motivation

- Grifftaxonomien
- Kontaktmodelle und Grasp-Wrench-Space
- Greifplanung und Griffsynthese
- Beispiele: Greifen mit ARMAR

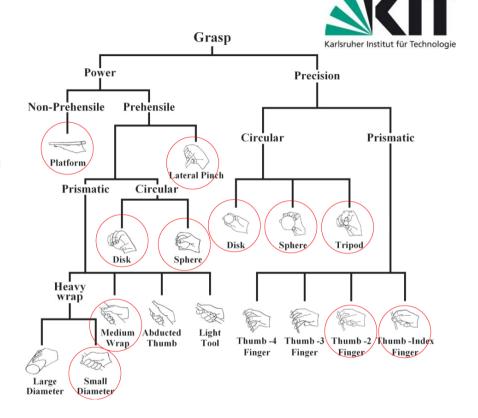
Komplexität des Problems reduzieren



- Durch die Einführung von Taxonomien
- Grifftaxonomie
 - Vereinfachung der Griffsynthese (Bestimmung von Kontaktpunkte auf dem Objekt)
 - Grundlagen für das Design von Roboterhänden
 - Evaluierung von Roboterhänden
 - Unterstützung der autonomen Greifplanung
- Bekannte Grifftaxanomien
 - In Robotik I: Cutkosky Taxonomie
 - In Robotik II: Weitere Taxonomien
 - Kamakura Taxonomie, Feix Taxonomie, Bullock and Dollar Taxonomie, KIT Whole-Body Grasp Taxonomie

Cutkosky Grifftaxanomie

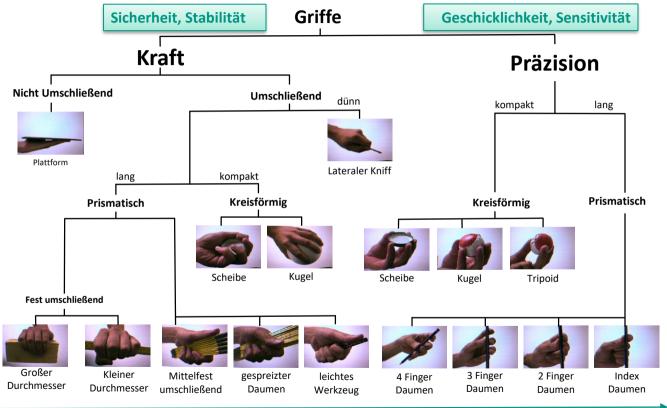
- 16 Grifftypen, die sich durch Form des zugreifenden Objekts und Konfiguration der Hand (Fingerstellung) unterschieden
- Hierarchiebaum: Grifftypen werden zu Gruppen zusammengefasst
- Oberste Ebene: Unterscheidung in Kraft- und Präzisionsgriffe


Mark Cutkosky, On Grasp Choice, Grasp Models, and the Design of Hands for Manufacturing Tasks. IEEE Transactions on Robotics and Automation, vol. 5, no. 3, pp. 269 – 279, 1989

Cutkosky Grifftaxanomie

- Kraft- und Präzisionsgriffe
- Aus der Beobachtung von Aktivitäten von Mechanikern

Fokus auf die Verwendung von Werkzeugen



Mark Cutkosky, *On Grasp Choice, Grasp Models, and the Design of Hands for Manufacturing Tasks*. IEEE Transactions on Robotics and Automation, vol. 5, no. 3, pp. 269 – 279, 1989

Cutkosky Grifftaxanomie

Zunehmende Geschicklichkeit; abnehmende Objektgröße

Zunehmende Kraft und Objektgröße

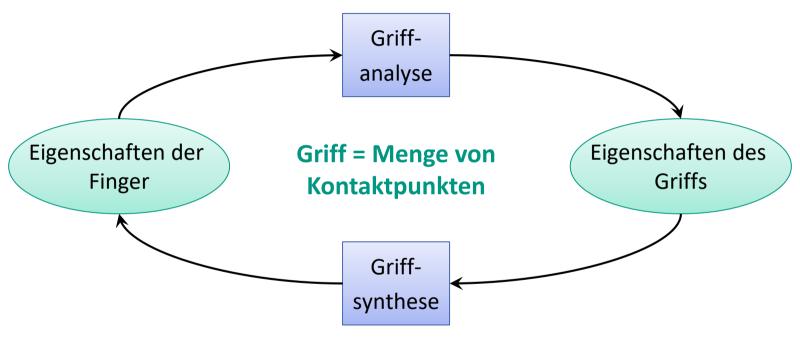
Weitere Grifftaxonomien

Kamakura Taxonomie

- Feix Taxonomie
- Bullock and Dollar Taxonomie
- KIT Whole-Body Grasp Taxonomie
- Mehr dazu in Robotik-II im SS

Wichtige Faktoren für die Generierung von Griffen

- Handkinematik
- Griffrepräsentation
- Vorwissen über das Objekt
- Griffsynthese: analytisch, datengetrieben
- Verfügbare Merkmale: 2D, 2.5D 3D, visuell, haptisch, ...
- Aufgabe


Jeannette Bohg, Antonio Morales, Tamim Asfour, Danica Kragic, *Data-Driven Grasp Synthesis - A Survey.* IEEE Tran. on Robotics, pp. 289-309, vol. 30, no. 2, 2014

Griffanalyse und Griffsynthese

Shimoga, K.B., "Robot Grasp Synthesis Algorithms: A Survey." The International Journal of Robotics Research (1996): 15 230-266

Griffanalyse und Griffsynthese

Eigenschaften des

Griffs

Griff-Analyse

Griff-

Synthese

Eigenschaften der

Finger

Griff:

Eine Menge von Kontaktpunkten auf der Oberfläche eines Objekts, die potentielle Bewegungen des Objekts unter dem Einfluss externer Kräfte einschränken bzw. kompensieren

Griffanalyse

Gegeben: Objekt und ein Griff als Menge von Kontaktpunkten

Gesucht: Aussagen zur Qualität/Stabilität des Griffs

Griffsynthese

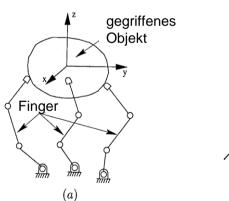
Gegeben: Objekt und ein Griff (mit bestimmen Eigenschaften)

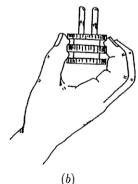
Gesucht: Eine Menge von Kontaktpunkten

Inhalt

Motivation

- Grifftaxonomien
- Kontaktmodelle und Grasp-Wrench-Space
- Greifplanung und Griffsynthese
- Beispiele: Greifen mit ARMAR




Fingerspitzengriffmodell

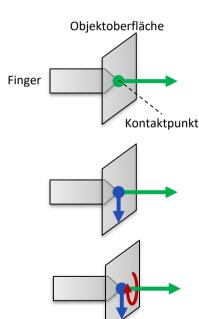
Modell: Griff = Menge von Kontaktpunkten auf Objektoberfläche

- ⇒ Nur Anordnung der Kontaktpunkte auf Oberfläche muss bestimmt werden.
- Vorteil: Vereinfacht Algorithmen zur Synthese möglicher Griffe eines Objekts.
- Nachteil: Ignoriert fundamentale Nebenbedingungen des Greifvorgangs.
 - Kollisionsfreiheit (Finger, Hand, Arm, ...)
 - Zugänglichkeit eines Griffes (Anfahr-/Abrückbewegung)

Kontaktmodelle

Man unterscheidet verschiedene Modelle des Fingerspitzenkontakts mit der Objektoberfläche:

Punktkontakt ohne Reibung

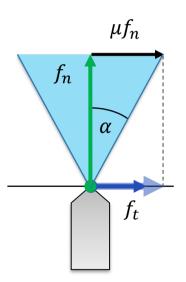

Kraft wirkt ausschließlich normal zur Objektoberfläche.

Starrer Punktkontakt mit (Haft-)Reibung

- Kraft wirkt sowohl normal als auch tangential zur Objektoberfläche.
- Beide Kräfte sind über das Coulombsche Reibungsgesetz miteinander verknüpft.

Nicht starrer Punktkontakt mit Reibung (Soft-Kontakt)

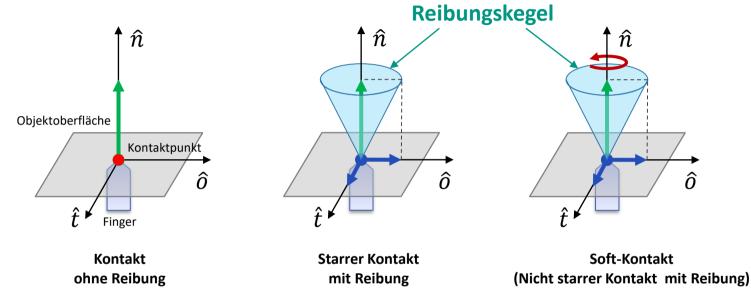
- Kraft wirkt sowohl normal als auch tangential zur Objektoberfläche.
- Zusätzlich wirken auch axiale Momente um die Normale am Kontakpunkt.
- Es gilt ebenfalls das Coulombsche Reibungsgesetz.


Kontaktmodelle: Coulombsches Reibungsgesetz

- Experimentelles Gesetz
- Beschreibt Verhältnis von tangentialer Kraft f_t zu normaler Kraft f_n :

$$f_t \le \mu \cdot f_n$$

- **Reibungskoeffizient** $\mu > 0$ (abhängig von beteiligten Materialien)
- Wenn Kontakt ruht:
 - $f_t = f_e < \mu \cdot f_n$
 - lacktriangle Tangentiale Kraft wirkt entgegen ausgeübter Kraft f_e .
- Wenn Kontakt gleitet:
 - $f_t = \mu \cdot f_n$
 - Tangentiale Kraft wirkt entgegen Bewegungsrichtung.



$$\alpha = \tan^{-1} \mu$$

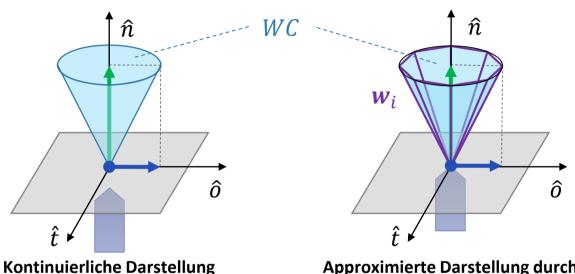
Kontaktmodelle: Geometrische Interpretation

Die Kräfte, die mit Reibung erzeugt werden können, liegen innerhalb eines Kegels (Reibungskegel), d.h. sie erfüllen (mit Normalen in +z-Richtung):

 $\sqrt{f_x^2 + f_y^2} \le \mu f_z \quad (f_z \ge 0)$

Wrench

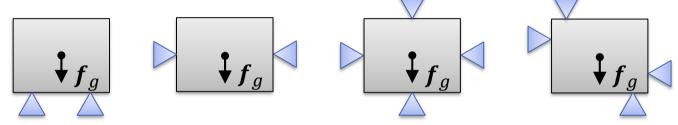
Die in einem Kontaktpunkt p wirkenden Kräfte $f = (f_x f_y f_z)$ und Momente $\tau = (t_x t_y t_z)$ können zu einem Wrench w (verallgemeinerte Kraft) zusammengefasst werden.


- Planarer Wrench (2D): $\mathbf{w} = (f_x \quad f_y \quad \tau_z)^T \in \mathbb{R}^3$
- Räumlicher Wrench (3D): $\mathbf{w} = \begin{pmatrix} f_x & f_y & f_z & \tau_x & \tau_y & \tau_z \end{pmatrix}^T \in \mathbb{R}^6$

Kontaktmodelle: Approximation des Reibungskegels

Approximierte Darstellung durch einbeschriebenes Polyeder

Der Reibungskegel (Wrench Cone) $WC \subseteq \mathbb{R}^6$ ist die positive lineare Hülle (pos) der w_i :


$$WC = pos(\{w_1, ..., w_n\}) = \{\sum_{i=1}^n k_i w_i \mid k_i \ge 0\}$$

Stabilität eines Griffs

- Wir wollen Objekte stabil greifen, d.h. so dass sie sich relativ zur Hand nicht bewegen.
- Wann ist ein Griff stabil?

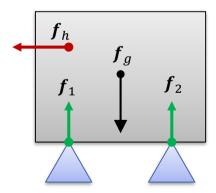
- ⇒ Verschiedene Konzepte von Stabilität:
 - Gleichgewichtsgriff
 - Kraftgeschlossener Griff
 - Formgeschlossener Griff
 - Qualitätsmaße

Gleichgewichtsgriff

Ein Griff wird als **Gleichgewichtsgriff** bezeichnet, wenn die Summe aller Kräfte und Momente, die auf das gegriffene Objekt wirken, gleich Null ist.

- ⇔ Das Objekt ruht.
- \Leftrightarrow Die durch Kontakte ausgeübten Wrenches w_i widerstehen exakt den externen, auf das Objekt wirkenden Wrenches w_{ext} .

$$\Leftrightarrow \mathbf{w}_{\text{ext}} + \sum_{i} \mathbf{w}_{i} = 0$$

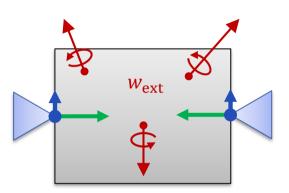


Gleichgewichtsgriff: Beispiel

Gleichgewichtsgriff: Die durch Kontakte ausgeübten Wrenches widerstehen exakt den externen auf das Objekt wirkenden Wrenches.

$$\Leftrightarrow \mathbf{w}_{\text{ext}} + \sum_{i} \mathbf{w}_{i} = 0 \qquad \mathbf{w}_{\text{ext}} = \begin{pmatrix} \mathbf{f}_{\text{ext}} \\ \mathbf{\tau}_{\text{ext}} \end{pmatrix}$$

Punktkontakte ohne Reibung


- Was, wenn $f_{\text{ext}} = f_a + f_h$?
- ⇒ Griff nicht mehr im Gleichgewicht.

Kraftgeschlossene Griffe (I)

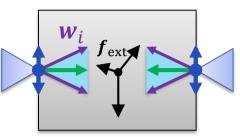
- Frage: Kann der Griff beliebigen externen Wrenches entgegenwirken?
 - Objekt muss (relativ zur Hand) im Kräftegleichgewicht bleiben.
 - Nötig, um Objekt sinnvoll manipulieren zu können.

- Annahme: Kontakte können beliebig große Kräfte ausüben.
- Frage dann: Kann der Griff beliebige Wrenches erzeugen?
- Betrachte im folgenden starre Punktkontakte mit Reibung.

Kraftgeschlossene Griffe (II)

- **Annahme:** Kontakte können beliebig große Kräfte ausüben.
- Frage dann: Kann der Griff beliebige Wrenches erzeugen?

Seien $w_{i1}, \dots, w_{im} \in \mathbb{R}^6$ die Vektoren, die den Reibungskegel von Kontakt i approximieren.


Der Reibungskegel $WC_i \subseteq \mathbb{R}^6$ ist die positive lineare Hülle der w_{ij} :

$$WC_i = pos(\{w_{i1}, ..., w_{im}\}) = \{\sum_{j=1}^m k_j w_{ij} \mid k_j \ge 0\}$$

 WC_i ist die Menge der Wrenches, die Kontakt i erzeugen kann.

Die **Gesamtmenge der Wrenches** WC, die durch alle Kontakte erzeugt werden können, ist die positive lineare Hülle der einzelnen WC_i :

$$WC = pos(\{WC_i\}) = \{\sum_i \sum_{j=1}^m k_{ij} \mathbf{w}_{ij} | k_{ij} \ge 0\}$$

Starre Punktkontakte mit Reibung

WC: Wrench Cone

Kraftgeschlossene Griffe (III)

Die Gesamtmenge der Wrenches, die durch alle Kontakte erzeugt werden können, ist die positive lineare Hülle der einzelnen WC_i : $WC = pos(\{WC_i\}) = \{\sum_i \sum_{j=1}^m k_{ij} \mathbf{w}_{ij} \mid k_{ij} \geq 0\}$

Der Griff ist **kraftgeschlossen**, wenn WC eine Kugel mit Radius $\varepsilon > 0$ um den Ursprung enthält. (Dann ist auch $WC = \mathbb{R}^d$, da WC eine lineare Hülle ist.)

⇒ Dann können Wrenches in alle Richtungen (Dimensionen des Wrench-Raums) erzeugt werden.

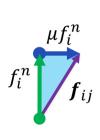
Annahme: Kontakte können beliebig große Kräfte ausüben.

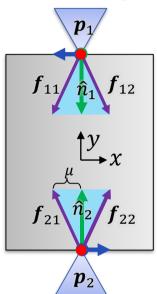
- ⇒ Beliebig große Wrenches können erzeugt werden.
- ⇒ Beliebigen externen Wrenches kann widerstanden werden ⇒ kraftgeschlossener Griff

Es können sehr große Normalkräfte nötig sein, um die nötigen Tangentialkräfte zu erzeugen.

Kraftgeschlossene Griffe: Beispiel in 2D (I)

- Zwei Kontakte mit Positionen p_1 , p_2 und Normalen \hat{n}_1 , \hat{n}_2
 - $\mathbf{p}_1 = (0 \ 3)^T \qquad \hat{n}_1 = (0 \ -1)^T$


$$\hat{n}_1 = (0 - 1)^T$$


- $\mathbf{p}_2 = (0 \quad -3)^T \qquad \hat{n}_2 = (0 \quad 1)^T$
- Beide Kontakte haben Reibungskoeffizient $\mu > 0$.
 - Einheitskraft: $f_i^n := 1 \Rightarrow f_i^t = \mu f_i^n = \mu$
 - $\mathbf{f}_{11} = (-\mu \quad -1)^T, \ \mathbf{f}_{12} = (\mu \quad -1)^T$
 - $\mathbf{f}_{21} = (-\mu \ 1)^T, \quad \mathbf{f}_{22} = (\mu \ 1)^T$
- lacksquare Zugehörige Momente: $au_{i\,i}=oldsymbol{d}_i imesoldsymbol{f}_{i\,i}$
 - Hier: $d_i = p_i$, da Ursprung im Objektschwerpunkt.
 - $\tau_{11} = 3\mu, \qquad \tau_{12} = -3\mu$

$$\tau_{12} = -3\mu$$

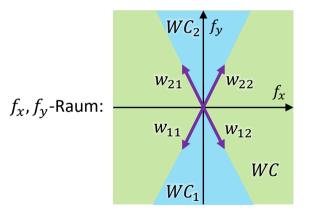
 $\tau_{21} = -3\mu$,

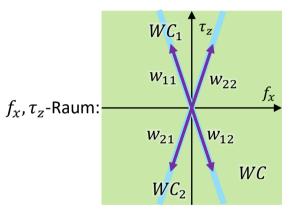
$$\tau_{22} = 3\mu$$

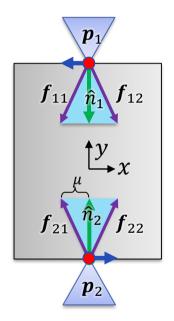
2D Kreuzprodukt:

$$\binom{a_1}{a_2} \times \binom{b_1}{b_2} = a_1 b_2 - a_2 b_1$$

Kraftgeschlossene Griffe: Beispiel in 2D (II)




Wrenches (Kanten der Reibungskegel):


$$\mathbf{w}_{11} = (-\mu \quad -1 \quad 3\mu)^T, \quad \mathbf{w}_{12} = (\mu \quad -1 \quad -3\mu)^T$$

$$\mathbf{w}_{21} = (-\mu \ 1 \ -3\mu)^T, \quad \mathbf{w}_{22} = (\mu \ 1 \ 3\mu)^T$$

Projektionen des 3D Wrench-Raums auf Unterräume:

- lacktriangle Reibungskegel spannen zusammen \mathbb{R}^3 auf.
- ⇒ Griff ist kraftgeschlossen.

Greifmatrix (I)

Seien $w_1, ..., w_m \in \mathbb{R}^6$ die Wrenches, die die Reibungskegel aller Kontakte aufspannen.

Die **Greifmatrix** *G* enthält die Wrenches aller Reibungskegel als Spalten:

$$G = \begin{pmatrix} \mathbf{w}_1 & \cdots & \mathbf{w}_m \end{pmatrix} \in \mathbb{R}^{6 \times m}$$

Für ein $\mathbf{k} \in \mathbb{R}^m$ ist $\mathbf{w} = G \cdot \mathbf{k} \in \mathbb{R}^6$ eine Linearkombination der Wrenches in G.

Der Griff kann einem externen Wrench $w_{\mathrm{ext}} \in \mathbb{R}^6$ widerstehen, wenn

- es ein ${m k}=(k_1 \quad ... \quad k_m) \in \mathbb{R}^m$ mit $k_i \geq 0$ gibt,
- sodass $G \cdot k + w_{\text{ext}} = 0$

(Dann ist $-w_{\text{ext}}$ in der positiven linearen Hülle der w_i .)

Greifmatrix (II)

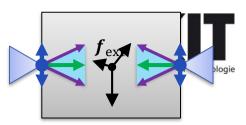
Die **Greifmatrix** *G* enthält die Wrenches aller Reibungskegel als Spalten:

$$G = \begin{pmatrix} \mathbf{w}_1 & \cdots & \mathbf{w}_m \end{pmatrix} \in \mathbb{R}^{6 \times m}$$

Der Griff kann beliebigen externen Wrenches $w_{\mathrm{ext}} \in \mathbb{R}^6$ widerstehen, wenn

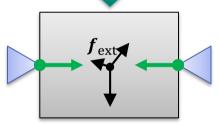
- lacksquare Vollen Rang hat, d.h. $\operatorname{rang}(G) = 6$, und
- es ein $\mathbf{k} = (k_1 \quad \dots \quad k_m) \in \mathbb{R}^m$ mit $\mathbf{k}_i > 0$ gibt, sodass $\mathbf{G} \cdot \mathbf{k} = \mathbf{0}$.

Dann ist der zu G gehörige Griff **kraftgeschlossen**. (engl.: force-closure)


Formgeschlossene Griffe

Frage: Was, wenn keine Reibung existiert?

- Punktkontakte ohne Reibung
- Dann: Kontakte wirken nur noch Kräfte entlang ihrer Normalen


Kann der Griff dann weiterhin beliebigen externen Wrenches entgegenwirken?

- Wenn ja, ist der Griff formgeschlossen.
 - Ähnlich zu kraftgeschlossenen Griffen, ...
 - aber nur Kräfte entlang der Normalen berücksichtigt.
 - Formschluss (engl. form-closure) ist eine strengere Bedingung als Kraftschluss.

Starre Punktkontakte **mit** Reibung

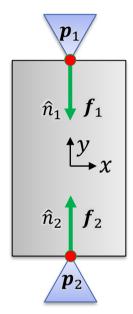
Starre Punktkontakte **ohne** Reibung

Form- geschlossen e ohne Reibung

Formgeschlossene Griffe: Beispiel in 2D (I)

- Zwei Kontakte mit Positionen p_1, p_2 und Normalen \hat{n}_1, \hat{n}_2
 - $\mathbf{p}_1 = (0 \quad 3)^T \qquad \hat{n}_1 = (0 \quad -1)^T$

$$\hat{n}_1 = (0 - 1)^T$$


- $p_2 = (0 -3)^T$ $\hat{n}_2 = (0 1)^T$
- Keine Reibung ⇒ nur zwei Kräfte:

$$f_1 = (0 -1)^T$$
, $f_2 = (0 1)^T$

$$f_2 = (0 \ 1)^T$$

- **u** Zugehörige Momente: $\tau_i = \mathbf{d}_i \times \mathbf{f}_i$
 - Hier: $d_i = p_i$, da Ursprung im Objektschwerpunkt.
 - $\tau_1 = 0 \cdot (-1) (-1) \cdot 0 = 0, \quad \tau_2 = 0$ (analog)
- **Erzeugte Wrenches:** $(w_i = (f_x \quad f_y \quad \tau_z)^T)$

$$\mathbf{w}_1 = (0 \quad -1 \quad 0)^T, \quad \mathbf{w}_2 = (0 \quad 1 \quad 0)^T$$

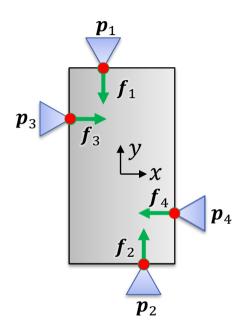
- Kontakte können weder Kräfte entlang der x-Achse noch Drehmomente um z-Achse aufbringen.
- ⇒ Griff ist nicht formgeschlossen.

Formgeschlossene Griffe: Beispiel in 2D (II)

Verschiebe Kontakte, füge zwei weitere hinzu:

$$p_1 = (-1 \quad 3)^T, \qquad f_1 = (0 \quad -1)^T$$

$$p_2 = (1 -3)^T$$
, $f_2 = (0 1)^T$


$$p_3 = (-2 \ 2)^T, \qquad f_3 = (1 \ 0)^T$$

$$p_4 = (2 -2)^T$$
, $f_4 = (-1 0)^T$

Erzeugte Momente und Wrenches:

$$\tau_3 = -2 \Rightarrow w_3 = (1 \ 0 \ -2)^T$$

$$\tau_4 = -2 \Rightarrow w_4 = (-1 \quad 0 \quad -2)^T$$

- $\longrightarrow WC = pos(\{w_i\}) = \mathbb{R}^3$, d.h. die w_i spannen den Wrench-Space vollständig auf.
- ⇒ Griff ist formgeschlossen.

Dimension der Greifmatrix

Die **Greifmatrix** *G* enthält die Wrenches aller Reibungskegel als Spalten:

$$G = \begin{pmatrix} \mathbf{w}_1 & \cdots & \mathbf{w}_m \end{pmatrix} \in \mathbb{R}^{6 \times m}$$

lacksquare ist abhängig von der Anzahl n von Kontakten und dem Kontaktmodell.

Starrer Punktkontakt ohne Reibung:

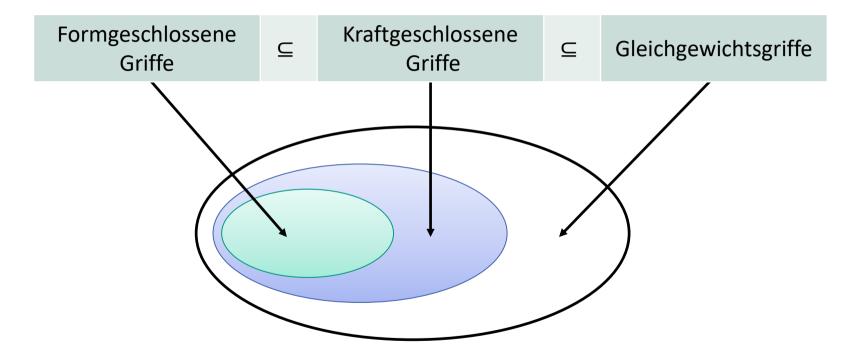
2D & 3D: Jeder Kontakt erzeugt genau einen Wrench. $\Rightarrow m = n$

Starrer Punktkontakt mit Reibung:

- **2D:** Reibungsdreieck durch genau zwei Wrenches aufgespannt. $\Rightarrow m = 2n$
- **3D:** Reibungskegel durch k Wrenches approximiert (z.B. k = 8). $\Rightarrow m = kn$

Anzahl benötigter Kontakte

Im Allgemeinen gilt: Um \mathbb{R}^d positiv aufzuspannen, sind d+1 Vektoren nötig.


	Planar (Wrench-Space: \mathbb{R}^3)	Räumlich (Wrench-Space: \mathbb{R}^6)
Formschluss (ohne Reibung)	Mindestens 4 KontakteMaximal 6 Kontakte	 Mindestens 7 Kontakte Maximale Anzahl: Beliebige Objekte: 12 Polyeder: 7
Kraftschluss (mit Reibung)	Mindestens 2 KontakteMaximal 3 Kontakte	Mindestens 4 Kontakte

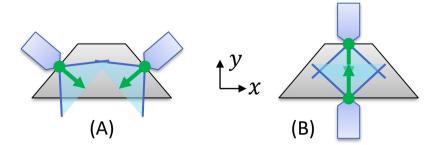
Es gibt "exceptional objects", z.B. der Kreis in 2D oder die Kugel in 3D, die nicht formgeschlossen (ohne Reibung) gegriffen werden können.

Mengentheoretische Darstellung der Griffhierarchie

Kraft- und Formgeschlossene Griffe

Kraftschluss:

- Die Kinematik der Hand kann aktiv Kräfte erzeugen, um einer externen Störung zu widerstehen.
- Reibungskräfte wirken mit.


Formschluss:

- Die Kontakte verhindern, dass sich das Objekt bewegen kann.
- Es werden keine Reibungskräfte benötigt / berücksichtigt.
- Kraftschluss ist mit weniger Kontaktpunkten möglich und wird deshalb bei Präzisionsgriffen (engl. precision grasps) verwendet. Er erfordert jedoch eine Regelung der intern auftretenden Kräfte bei einem Griff.
- Formschluss ist eine stärkere Bedingung als Kraftschluss und wird oft bei der Ausführung von Kraftgriffen (engl. power grasps) verwendet.

Griffqualität

Betrachte Griffe (A) und (B):

- Welcher der Griffe ist kraftgeschlossen?
 - (A) und (B)
- Sind beide Griffe gleich gut?
 - Mit (A) müssen sehr große Normalkräfte aufgebracht werden, um Reibungskräfte in y-Richtung zu erzeugen.
 - Mit (B) ist es einfacher, Kräfte in alle Richtungen zu wirken.
- Wie kann man das quantifizieren?

Griffqualität: Griff (A)

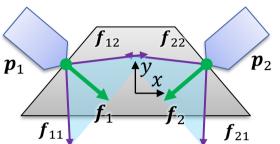
Positionen und Normalkräfte

$$p_1 = (-4 \quad 1)^T, \qquad f_1^n = \frac{1}{\sqrt{2}} (1 \quad -1)^T$$

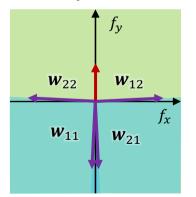
$$p_2 = (4 1)^T, f_2^n = \frac{1}{\sqrt{2}}(-1 -1)^T$$

$$f_{11} = \frac{1}{\sqrt{2}} (-0.1 \quad -2.1)^T, \ f_{12} = \frac{1}{\sqrt{2}} (2.1 \quad 0.1)^T$$

$$f_{21} = \frac{1}{\sqrt{2}}(0.1 \quad -2.1)^T, \quad f_{22} = \frac{1}{\sqrt{2}}(-2.1 \quad 0.1)^T$$



$$\tau_{11} = \frac{8.5}{\sqrt{2}} \qquad \Rightarrow \mathbf{w}_{11} = \frac{1}{\sqrt{2}} (-0.1 \quad -2.1 \quad 8.5)^T = (-0.0707 \quad -1.48 \quad 6.01)^T$$


$$\tau_{12} = \frac{-2.5}{\sqrt{2}}$$
 $\Rightarrow w_{12} = \frac{1}{\sqrt{2}}(2.1 \ 0.1 \ -2.5)^T = (1.48 \ 0.0707 \ -1.76)^T$

$$\tau_{21} = \frac{-8.5}{\sqrt{2}} \implies \mathbf{w}_{21} = \frac{1}{\sqrt{2}} (0.1 \quad -2.1 \quad -8.5)^T = (0.0707 \quad -1.48 \quad -6.01)^T$$

$$\tau_{22} = \frac{2.5}{\sqrt{2}}$$
 $\Rightarrow w_{22} = \frac{1}{\sqrt{2}}(-2.1 \ 0.1 \ 2.5)^T = (-1.48 \ 0.0707 \ 1.76)^T$

 f_x , f_y -Raum

Griffqualität: Griff (B)

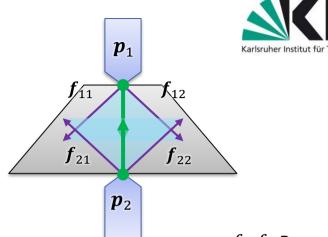
Positionen und Normalenkräfte

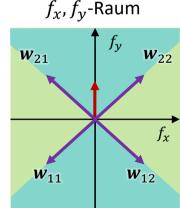
$$p_1 = (0 \ 2)^T, f_1^n = (0 \ -1)^T$$

$$f_1^n = (0 -1)^T$$

$$p_2 = (0 -1)^T$$
, $f_2^n = (0 1)^T$

$$f_2^n = (0 \ 1)^T$$

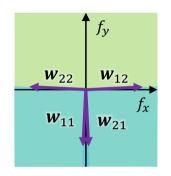

- $\mu = 1.1$, Reibungskräfte $f_{ii} = f_i^n + \mu \cdot f_i^{t_j}$
 - $f_{11} = (-1.1 \quad -1)^T$, $f_{12} = (1.1 \quad -1)^T$
 - $f_{21} = (-1.1 1)^T$, $f_{22} = (1.1 1)^T$
- **Erzeugte Momente und Wrenches:**

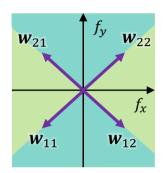

$$\tau_{11} = 2.2 \Rightarrow w_{11} = (-1.1 \quad -1 \quad 2.2)^T$$

$$\tau_{12} = -2.2 \Rightarrow w_{12} = (1.1 -1 -2.2)^T$$

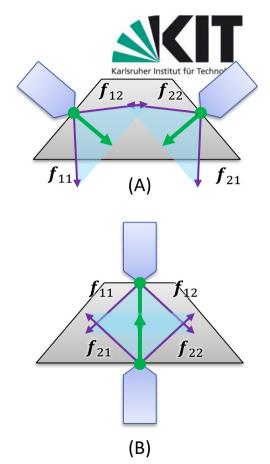
$$\tau_{21} = -1.1 \Rightarrow w_{21} = (-1.1 \quad 1 \quad -1.1)^T$$

$$\tau_{22} = 1.1 \implies w_{22} = (1.1 \quad 1 \quad 1.1)^T$$



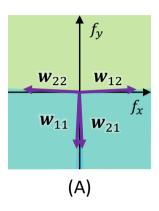


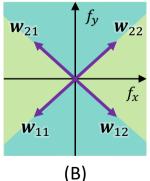
Griffqualität: Grasp-Wrench-Space


Vergleiche f_x , f_y -Ebenen der Wrench-Räume:

Wie kann Wrench $\mathbf{w} = (0 \quad 1 \quad 0)^T$ erzeugt werden?

- $(A) z.B: w = 7.1 w_{12} + 7.1 w_{22}$
- $\blacksquare \text{ (B) z.B: } w = 0.5 w_{21} + 0.5 w_{22}$
- ⇒ (B) Benötigt weniger Kraft, um denselben Wrench zu erzeugen

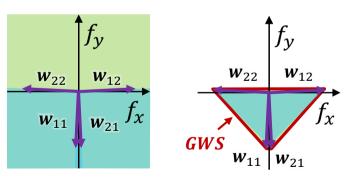




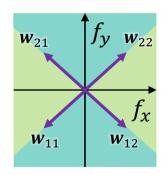
Griffqualität: Grasp-Wrench-Space-Metrik

Karlsruher Institut für Technologie

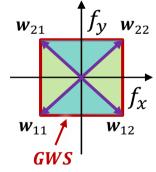
- Kraftgeschlossenheit bedeutet, dass beliebige Wrenches erzeugt werden können, wenn beliebig große Kräfte aufgebracht werden können.
- Was, wenn ...
 - manche Wrenches "schwierig" zu erzeugen sind?
 - nicht beliebig große Kräfte aufgebracht werden können?
- Bisherige Bedingung für Koeffizienten der Kräfte: $k_i \geq 0$
- Jetzt: Gedachte obere Schranke: $k_i \in [0, f_{max}]$
- ⇒ Reibungskegel sind nicht mehr unendlich
- Aus linearer Hülle wird konvexe Hülle


Griffqualität: Grasp-Wrench-Space

Seien $w_1, ..., w_m \in \mathbb{R}^6$ die Vektoren, die die Reibungskegel aller Kontakte approximieren.


Der Grasp-Wrench-Space GWS ist die konvexe Hülle der w_i

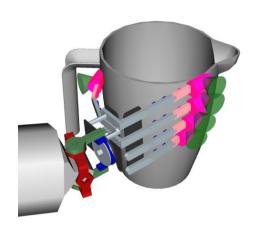
$$GWS = \text{conv}(\{w_i\}) = \left\{ \sum_{i=1}^{m} k_i w_i \mid k_i \ge 0 \text{ und } \sum_{i=1}^{m} k_i = 1 \right\}$$



Lineare Hülle

Konvexe Hülle

Lineare Hülle



Konvexe Hülle

Visualisierung des Grasp-Wrench-Space in 3D

Griff im kartesischen Raum

Kraft-Unterraum des GWS

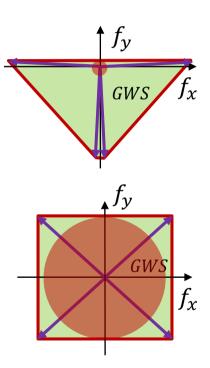
Drehmoment-Unterraum des GWS

N. Vahrenkamp, T. Asfour and R. Dillmann, *Simultaneous Grasp and Motion Planning*, IEEE Robotics and Automation Magazine, Vol. 19, No. 2, pp. 43 - 57, June, 2012

Griffqualität: Grasp-Wrench-Space

Der **Grasp-Wrench-Space** GWS ist die konvexe Hülle der w_i

$$GWS = \text{conv}(\{w_i\}) = \{\sum_{i=1}^{m} k_i w_i \mid k_i \ge 0 \text{ und } \sum_{i=1}^{m} k_i = 1\}$$


Wie könnte man mit Hilfe des *GWS* ein **Maß für die Qualität** eines Griffs definieren?

Die ε -Metrik ist der Radius der größten Kugel um den Ursprung des GWS, die noch vollständig in GWS enthalten ist.

Sie wird manchmal auch Grasp-Wrench-Space-Metrik genannt.

Intuition:

- lacksquare ist die Stärke des kleinsten Wrenchs, der den Griff bricht.
- lacktriangle Der Griff widersteht allen Wrenches, deren Stärke unter arepsilon ist.
- Wenn $\varepsilon > 0$, ist der Griff kraftgeschlossen.
- lacktriangle Je größer arepsilon, desto "stabiler" ist der Griff.

Grasp-Wrench-Space-Metrik: Beispiele

Griff	(A)	(B)
2D Arbeitsraum		
f_x , f_y -Ebene des Grasp-Wrench-Space mit ε -Kugel um Ursprung	f_y GWS f_x	f_y GWS f_x
ε_{xy} -Metrik in f_x , f_y -Raum	$\varepsilon_{xy} = 0.0707$	$\varepsilon_{xy}=1$

Grasp-Wrench-Space-Metrik: Bemerkungen

Problem 1: Kräfte und Drehmomente haben verschiedene Einheiten.

- lacksquare -Metrik über ganzen GWS definiert, d.h. Kräfte und Drehmomente.
- Wie skaliert man Kräfte zu Drehmomenten?

Mögliche Lösung:

- lacktriangle Wähle charakteristische Länge r des Objekts (z.B. größte Ausdehnung).
- Nonvertiere Drehmomente τ zu Kräften τ/r .

Problem 2: Drehmomente hängen von Wahl des Bezugspunkts (OKS) ab.

lacksquare Damit hängt auch arepsilon-Metrik von Wahl des Bezugspunkts ab.

Mögliche Lösung:

Wähle Ursprung des OKS nahe des geometrischen Zentrums oder Schwerpunkts.

Grasp-Wrench-Space-Metrik: Bemerkungen

Problem 3: Betrachte diesen Griff

- ε -Metrik liefert sehr guten Wert.
- Aber: Ungenauigkeiten bei Ausführung kann zu sehr schlechtem Griff führen.

Mögliche Lösung:

Berechne ε -Metrik mehrfach für zufällig oder systematisch perturbierte Objektposen.

Option 1:

lacktriangle Wähle Minimum, 10. Perzentil, Median, ... der arepsilon-Metrik der zufälligen Posen

Option 2:

■ Verwende Anteil der Griffe, deren $\varepsilon > 0$ (kraftgeschlossen) \to "Griff-Erfolgsrate"

Grasp-Wrench-Space-Metrik: Zusammenfassung

Die ε -Metrik ...

- ist eine allgemeine und weit verbreitete Qualitätsmetrik für Fingerspitzengriffe
- modelliert, wie widerstandsfähig ein Griff gegenüber externen Wrenches ist
- kann verwendet werden, um Griffe auf Kraftschluss zu prüfen
- benötigt Modellwissen
 - Geometrie der Finger und Objekt, Reibungskoeffizienten, Kontaktpositionen und -normalen

Der optimale Griff hängt auch von der Anwendung ab!

- Bestimmte Kräfte treten überwiegend oder ausnahmslos auf
- Objekt muss auf bestimmte Art und Weise manipuliert werden
- Objekt muss übergeben oder für eine Aufgabe (z.B. hämmern) verwendet werden
- \rightarrow Das wird in der grundlegenden ε -Metrik nicht berücksichtigt

Metriken für Griffqualität sind ein aktuelles Forschungsthema!

Inhalt

Motivation

- Grifftaxonomien
- Kontaktmodelle und Grasp-Wrench-Space
- Greifplanung und Griffsynthese
- Beispiele: Greifen mit ARMAR

Klassifikation von Greifplanungssystemen

Greifplanungssysteme können nach folgenden Kriterien klassifiziert werden:

- Typ des verwendeten Greifers (Zweifinger-, Dreifinger-, Mehrfingergreifer, ...)
- Typ der zugrunde liegenden Greifplanungsalgorithmen
 - Geometrie-basiert (Verwendung von CAD-Daten)
 - Physik-basiert (auftretende Kräfte und Momente)
- Typ der Geometrie des zu greifenden **Objekte** (Polygone, Polyeder, beliebige Geometrie…)
- Typ der zu manipulierenden Szenen
 - Bekannt: Lage und Orientierung aller Objekte in der Szene bekannt
 - (Teilweise) unbekannt: Es kommen unbekannte Objekte an unbekannten Posen vor
- Typ der Sensorik (Keine Sensorik, taktile Sensorik, visuelle Sensorik, ...)

Suchraum des Greifens

 Soll ein zulässiger Griff geplant werden, so beträgt die Dimension des Suchraums (für den physikalischen als auch für den geometrischen Ansatz)

$$6 + n$$

- 6 Freiheitsgrade für die Position und Orientierung der Hand im Raum
- n Anzahl der Konfigurationsparameter der Handfinger
- Parallelbackengreifer: Suchraum der Dimension 7 (1 für den Greifer + 6)
- ARMAR-III Hand: Suchraum der Dimension 14 (8 für die Hand + 6)
- Menschliche Hand: Suchraum der Dimension 27 (21 für die Hand + 6)

Objektklassen für das Greifen

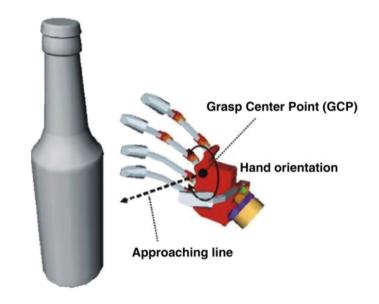
Bekannte Objekte (known objects)

- Bekannte Objektgeometrie (d.h. wir haben ein komplettes Objektmodell)
- Ansatz: Verwende einen Greifplaner, der mit bekannten Objektgeometrien arbeitet
- Domäne für klassische Greifplanung
- Schwierig

Bekannte Objektklasse (familiar objects)

- Konkrete Objektgeometrie ist nicht bekannt (z.B. nur "Objekt ist vom Typ Flasche")
- Ansatz: Übertrage Wissen von bekannten Klassenelementen auf das zu greifende Objekt
- Schwieriger

Unbekannte Objekte (unknown objects)


- Weder Objektgeometrie noch Objektklasse sind bekannt
- Probleme (u.a.)
 - Umgehen mit unvollständige/lückenhaften Sensordaten (Stereo Vision, RGB-D, Laserscans, haptische Daten)
 - Segmentierung des Objektes vom Hintergrund
 - Erstellen eines (teilweisen) Objektmodells
- Ansätze (u.a.)
 - Sensorfusion
 - Interaktive Perzeption (Objekt verschieben)
- Am schwierigsten!

Definition eines Griffes

- Ein Griff kann definiert werden durch
 - Griffmittelpunkt auf dem Objekt, an dem der Tool Center Point (TCP) ausgerichtet werden soll (Anfahrtspunkt)
 - Annäherungsvektor beschreibt den Winkel mit dem sich die Hand dem Griffmittelpunkt nähert (Anfahrtsrichtung)
 - Orientierung des Handgelenks der Roboterhand
 - Initiale Fingerkonfiguration (pre-shape)

Algorithmen zur Griffsynthese

Voraussetzungen

- Definition der Handkinematik
- Kontaktmodell (meist: Punktkontakt mit Reibung)
- Objektmodell (meist: vollständig bekannt)

Algorithmen zur Griffsynthese bei bekannten Objekten

- Übersichtsartikel (*Survey*): J. Bohg, A. Morales, T. Asfour and D. Kragic, *Data-Driven Grasp Synthesis A Survey*, IEEE Transactions on Robotics, Vol. 30, No. 2, pp. 289 309, 2014
- Randomisierte Verfahren mittels Vorwärtsplanung [Diankov 2010, Berenson et al. 2007, Vahrenkamp et al. 2011]
- *Griffsynthese auf Objektteilen* [Goldfelder et al. 2007, Huebner et. al 2008, ...], Darstellung der Objekte durch (approximierte) Objektteilen (object parts), Synthese von Griffen auf den Objektteilen
- Greifplanung über die Mediale Achse oder Skeleton der Objekte [Przybylski et al. 2010, Vahrenkamp et al. 2018]
- Griffsynthese basierend auf *Eigengrasps* [Ciocarlie et al. 2007, Bicchi et al. 2011, ...]
- Greifplanung basierend auf Independent Contact Regions [Roa et al. 2009]
- ..

Griffsynthese durch Vorwärtsplanung (I)

Ansatz

- Planung in Simulation
- Bestimmung von Anfahrtspunkt und Anfahrtsrichtung
- Hand nähert sich dem Objekt, bis ein Kontakt detektiert wird
- Finger schließen sich um das Objekt, bis Kontakt hergestellt ist
- Evaluation der Kontakte zwischen Hand und Objekt Interessant: Ist der Griff kraftgeschlossen?

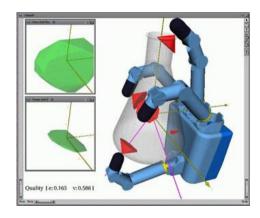
Vorteile

- Vorwärtsplanung ist ähnlich zur Ausführung eines Griffs auf einem realen Roboter
- Griffe, die erfolgreich in der Simulation evaluiert wurden, können mit hoher Wahrscheinlichkeit auch mit einem realen Roboter durchgeführt werden

Griffsynthese durch Vorwärtsplanung – Algorithmus

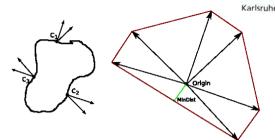
Karlsruher Institut für Technologie

- 1. Lade Hand- und Objektmodell in eine Simulationsumgebung
- 2. Erzeuge Griffkandidaten
 - Bestimme Näherungsrichtung der Hand zum Objekt
 - Bestimme Orientierung der Hand
 - Bestimme Handkonfiguration (beginnend mit der geöffneten Hand)
 - Nutze Heuristiken für die Erzeugung von Griffkandidaten (Reduktion des Suchraumes)
- 3. Evaluation der Griffkandidaten
 - Bewege die Hand entlang der N\u00e4herungsrichtung bis zu Kontakt mit dem Objekt
 - Schließe die Hand bis Kontakt mit dem Objekt
 - Bestimme die Kontaktpunkte
 - Bestimme die Griffqualität (z.B. ε -/GWS-Metrik)

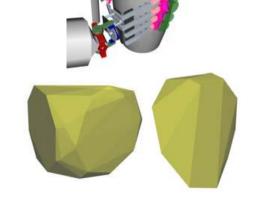


Griffqualität (Kraftschluss-Metrik)

- Prinzip: Wie gut kann ein Griff externen Kräften widerstehen?
- Ansatz
 - Bestimme Kontaktpunkte und Kontaktnormalen zwischen Hand und Objekt
 - Bestimme den Reibungskegel an jedem Kontaktpunkt (Öffnungswinkel des Kegels hängt von den Reibungskoeffizienten ab)
 - Berechne den Grasp Wrench Space (GWS, 6D) als konvexe Hülle über alle Reibungskegel
 - **ε-Metrik:** Die minimale Distanz vom Zentrum zum Rand des GWS (Radius der Kugel) ist ein Maß für die Stabilität des Griffs



- · Rot: Reibungskegel
- Grün: Projektionen des GWS

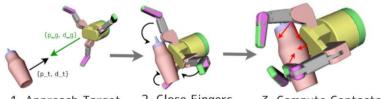

Grasp Wrench Space

Grasp Wrench Space (GWS): Konvexe Hülle über die Vereinigung aller Kontakt-Wrenches

2D Beispiel mit 3 Kontakten (Kraft)

- Qualitätsmaß
 - Kraftschluss (force closure):GWS enthält Ursprung
 - Volumen (V): Volumen des GWS
 - Epsilon (ε): größte einschließende Kugel, bzw. kleinste Distanz ε vom Ursprung zum Rand des GWS

N. Vahrenkamp, T. Asfour and R. Dillmann, *Simultaneous Grasp and Motion Planning*, IEEE Robotics and Automation Magazine, Vol. 19, No. 2, pp. 43 - 57, June, 2012



Zufallsbasierte Vorwärts-Greifplanung (I)

Ablauf:

- 1. Randomisierte Erzeugung von Griffhypothesen
 - Position und Orientierung der Hand (bzgl. des Objektes)
 - Konfiguration der Finger
- Kontaktermittlung
- 3. Evaluation der Hypothesen
 - Kraftschluss
 - Kollision
 - Robustheit

1. Approach Target

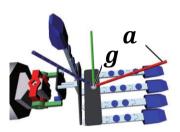
2. Close Fingers

3. Compute Contacts

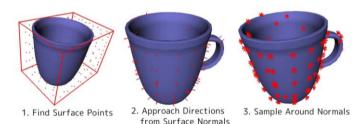
- R. Diankov, Automated construction of robotic manipulation programs, Ph.D. dissertation, Carnegie Mellon
- University, Robotics Institute, Aug 2010.
- 2. Dmitry Berenson, Rosen Diankov, Koichi Nishiwaki, Satoshi Kagami, and James Kuffner, *Grasp Planning in Complex Scenes*, IEEE-RAS International Conference on Humanoid Robots (Humanoids07), December, 2007.
- 3. N. Vahrenkamp, M. Kröhnert, S. Ulbrich, T. Asfour, G. Metta, R. Dillmann and G. Sandini, *Simox: A Robotics Toolbox for Simulation, Motion and Grasp Planning*, International Conference on Intelligent Autonomous Systems (IAS), pp. 585 594, 2012

Zufallsbasierte Vorwärts-Greifplanung (II)

Handmodell


■ **Grasp Center Point (GCP)**:

Definiert das Zentrum *g* sowie die

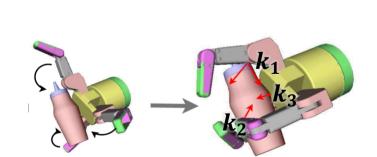

Anfahrtsrichtung *a* für einen Grifftyp

Erzeugung von Griffhypothesen

- Bestimmung der Anfahrtsrichtung:
 - Zufällige Auswahl eines Oberflächenpunktes p
 - lacktriang Ermittlung der Oberflächennormalen $oldsymbol{n}$

Definition des GCPs der ARMAR-III Hand für einen Kraftgriff

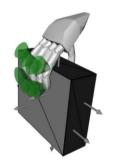
Zufallsbasierte Vorwärts-Greifplanung (III)

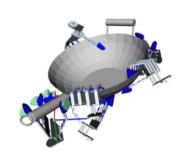


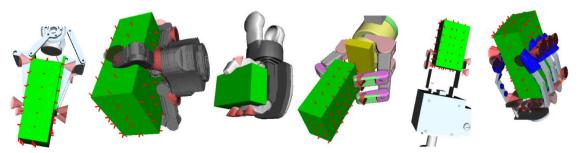
Bestimmung der Griffhypothese

- Positionierung der Hand
 - Position der Hand: g liegt auf Halbgerade, welche durch p und n definiert wird
 - Ausrichtung der Handorientierung, so dass a und n kollinear sind. Der freie Parameter (Handorientierung um a) wird zufällig gewählt.

- lacktriangle Bewegung der Hand entlang $oldsymbol{a}$ zum Objekt
- Schließen der Finger
- lacktriangle Ermittlung von n Kontaktpunkten $oldsymbol{k_1}, ..., oldsymbol{k_n}$

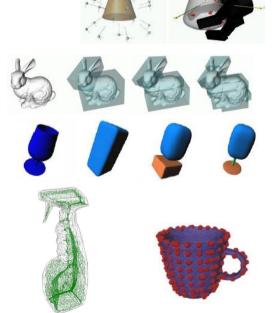



Zufallsbasierte Vorwärts-Greifplanung (III)



Analyse der Griffhypothese

- lacksquare Kontaktpunkte k_1 , ..., k_n werden analysiert
 - Kraftschluss
 - \blacksquare Griffqualität ($V, \varepsilon, ...$)
- Valide Griffe werden gespeichert
- Griffhypothesen mit unzureichenden Eigenschaften werden verworfen

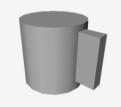


Griffsynthese auf Objektteilen

- Komplexe Objektgeometrie: Schwierige Griffberechnung
- Ausweg: Gute Griffkandidaten auf Teilen eines Objekts bestimmen
- Ansätze für verschiedene Objektapproximationen

Formprimitive (shape primitives)	Manuelle Unterteilung in Primitive (Boxen, Zylinder, Kugeln, Kegel, usw.)
Box-Dekomposition	Automatische Unterteilung (nur Boxen)
Superquadriken	Automatische Unterteilung
Mediale-Achse- Transformation	Nur Kugeln
Oberflächennormalen	

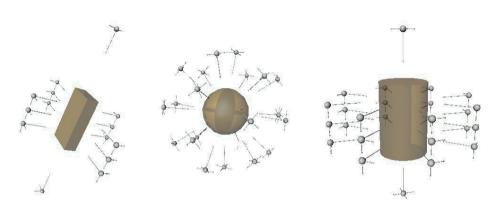
Greifplanung mit Formprimitiven (I)


- Objekte werden durch einfache Formprimitive (shape primitives) dargestellt
- Für jedes Formprimitiv werden unterschiedliche Greifstrategien vordefiniert. (inklusive Startpunkt und Anrückrichtung)

- Der Startpunkt definiert die initiale Handposition
- Basierend auf der Anrückrichtung wird die Hand zum Objekt bewegt bis ein Kontakt ermittelt wird
- Kontaktpunkte werden durch Schließen der Hand bestimmt
- Evaluation der Kontakte über den GWS-Ansatz

A. T. Miller, S. Knoop, H. I. Christensen, and P. K. Allen, *Automatic Grasp Planning Using Shape Primitives*, in IEEE Int. Conf. On Robotics and Automation (ICRA), 2003, pp. 1824–1829.

Greifplanung mit Formprimitiven (II)



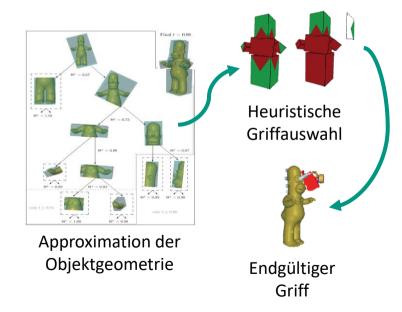
Greifstrategien

- Box
- Kugel
- Zylinder
- Kegel

Parameter

- Anzahl paralleler Unterteilungen (Boxen, Seiten von Zylinder und Kegel)
- Anzahl von Kreisunterteilungen (Kugel, Seiten von Zylinder und Kegel)
- Anzahl der Handorientierungen (um die Anfahrtsrichtung)
- Spiegelung der Griffe (bei symmetrischen Primitiven)
- Die Parameter werden automatisch aus den Objektdimensionen bestimmt.

Greifplanung mit Formprimitiven – Ergebnisse

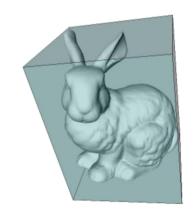


Greifen bekannter Objekte: Ein Box-basierter Ansatz (I)

- Approximation der Objektgeometrie durch Boxen (box decomposition)
- Griffhypothesen für Boxen erzeugen
- Evaluation der Griffhypothesen in einem Greifplaner (hier Grasplt!)

Greifen bekannter Objekte: Ein Box-basierter Ansatz (II)

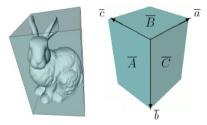
- Haushaltsobjekte mit bekannter Geometrie
 - Aus der KIT ObjectModels Web Database http://h2t-projects.webarchiv.kit.edu/Projects/ObjectModelsWebUI/
 - Objektrepräsentation
 - 3D Punktwolken (Stereobilder, mehrere Objektansichten)
 - (Texturierte) Dreiecksnetze (Meshes)
- Approximation der Objektgeometrie durch Box-Dekomposition
 - Effizienter Minimum Volume Bounding Box (MVBB) Algorithmus [Barequet and Har-Peled, 2001]
 - Basierend auf Punktwolken
- 1. K. Huebner, S. Ruthotto and D. Kragic, *Minimum Volume Bounding Box Decomposition for Shape Approximation in Robot Grasping*. In 2008 IEEE International Conference on Robotics and Automation (ICRA 2008)
- 2. Huebner, K., Welke, K., Przybylski, M., Vahrenkamp, N., Asfour, T., Kragic, D., and Dillmann, R. *Grasping Known Objects with Humanoid Robots: A Box-Based Approach.* In 14th International Conference on Advanced Robotics, 2009

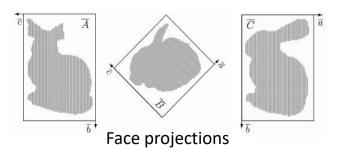

Dekompositionsalgorithmus: Von Punkten zu Boxen (I)

- Effizienter Algorithmus zur Berechnung der Minimum Volume Bounding Box (MVBB) von Barequet und Har-Peled (2001)
- Nimmt eine 3D Punktwolke mit n Punkten und berechnet die MVBB mit Komplexität $O(n \log n + n/\varepsilon^3)$ (ε : GWS-Metrik für kraftgeschlossene Griffe)
- Benötigt: Ein Teilungskriterium, um die Wurzel der MVBB in eine Menge von kleineren Boxen zu unterteilen, die die Form genauer approximieren.

Ansatz:

- Prüfe die 6 flächenparallele Ebenen des MVBB auf die Minimierung des umschlossenen Volumens.
- Teile die Punktwolke iterativ und fitte zwei neue Kind-Boxen.




Dekompositionsalgorithmus: Von Punkten zu Boxen (II)

 Reduziert das Problem des Teilens eines 3D-Quaders durch eine oberflächenparallele Ebene auf das Teilen eines 2D-Rechtecks durch eine kantenparallele Linie

Source and MVBB

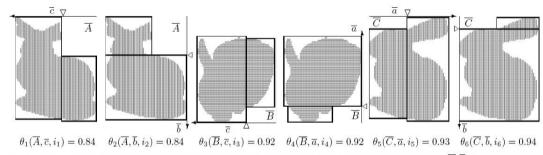
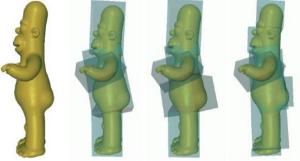


Fig. 4. Best cuts along the six box directions and cut positions i marked by triangles. The corresponding volume values $\theta(\overline{\mathcal{F}}, \overline{f}, i)$ are presented below.

K. Huebner and D. Kragic, "Selection of robot pre-grasps using box-based shape approximation," 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2008, pp. 1765-1770.

Dekompositionsalgorithmus: Von Punkten zu Boxen (III)



(a) Mug (model): MVBBs (2,3,5) produced with t=0.90, 0.94, 0.98.

(b) Duck (model): MVBBs (3,5,9) produced with t=0.90, 0.94, 0.98.

(d) Bunny (model): MVBBs (2,4,11) produced with t=0.90, 0.94, 0.98.

(c) Homer (model): MVBBs (4,5,7) produced with t=0.90, 0.94, 0.98.

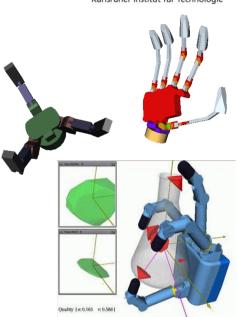
(e) Stapler (scan): MVBBs (2,2,2) produced with t=0.90, 0.94, 0.98.

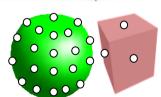
(f) Puncher (scan): MVBBs (3,4,4) produced with t=0.90, 0.94, 0.98.

(g) Notebook (scan): MVBBs (3,4,6) produced with t=0.90, 0.94, 0.98.

Details in [Huebner et al., 2008]

Erzeugen von Griffhypothesen: Von Boxen zu Griffen

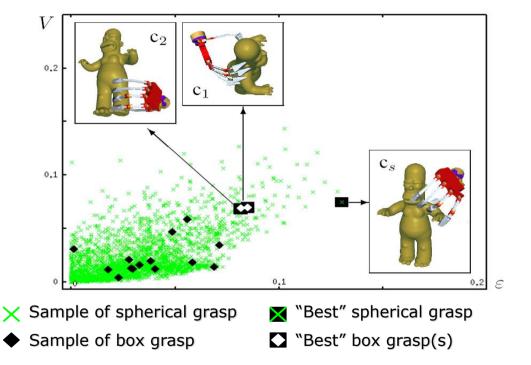

- Jede Box hat sechs Seitenflächen, welche jeweils vier Griffhypothesen implizieren
 - Griffpunkt: Mittelpunkt der Seitenfläche
 - Griffrichtung: Entlang der Normale der Seitenfläche
 - Handorientierung: Vier Möglichkeiten, orientiert an den Kanten der Fläche
- Über die Größen der Seitenflächen können *unmögliche* Griffe direkt ausgeschlossen werden
 - z.B. Seitenfläche ist größer als die Handöffnung
- Griffhypothesen für blockierte oder verdeckte Seitenflächen können durch einfache geometrische Berechnungen verworfen werden



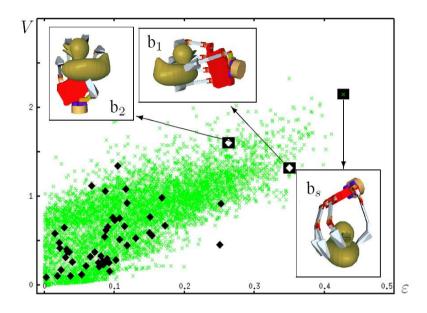
Evaluation (I)

Karlsruher Institut für Technologie

- Experimentelle Evaluation durch Simulationsumgebung GraspIt! (Miller et al., 2004)
- Zwei verwendete Handmodelle
 - Barrett Technologies (3 Finger, 4 DOF)
 - Karlsruhe Humanoid Hand (5 Finger, 8 DOF)
- Zwei Qualitätsmaße
 - V: Volumen des GWS
 - lacksquare arepsilon: Größte Kugel im GWS
- Zwei Verfahren wurden verglichen
 - Sphärisch: 22104 Griffhypothesen (Punkten auf Kugeloberfläche)
 - Box: Griffhypothesen aus Box-Unterteilung



Evaluation (II)

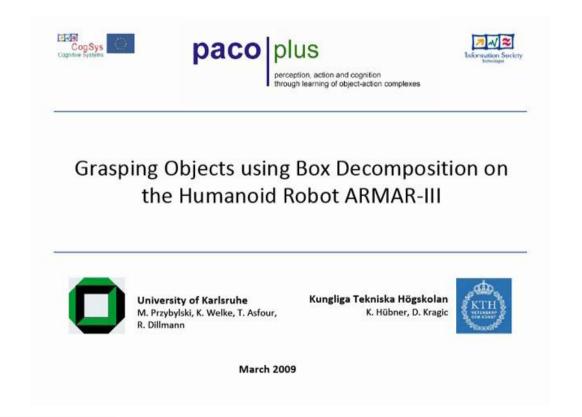


Box-Dekomposition erzeugt wenige, aber qualitativ hochwertige Griffhypothesen

Evaluation (III)

- ★ Sample of spherical grasp
- ▼ "Best" spherical grasp

Sample of box grasp


■ "Best" box grasp(s)

Box-Dekomposition erzeugt wenige, aber qualitativ hochwertige Griffhypothesen

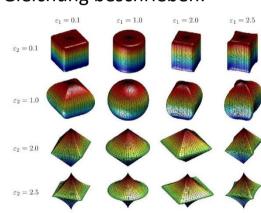
Evaluation auf ARMAR-III

Dekompositionsalgorithmus: Ergebnisse

- Exakte Form ist nicht notwendig, um Griffe zu erzeugen
- Objekte können durch vereinfachte Formen (Boxen) besser verarbeitet werden. Hierzu können Punktwolken der Oberflächen verwendet werden.

- Einfache Parametrisierung der Algorithmen
- Evaluation: Ansatz der Box-Dekomposition erzeugt Griffe, welche mit einem humanoiden Roboter erfolgreich ausgeführt werden können.

Greifplanung mit Superquadriken (I)


Superquadrik:

- Parametrisierbare Funktionen definieren die Form des geometrischen Objektes
- Eine an den Koordinatenachsen ausgerichtete Superquadrik im Ursprung des Koordinatensystems wird durch fünf Parameter mit folgender Gleichung beschrieben:

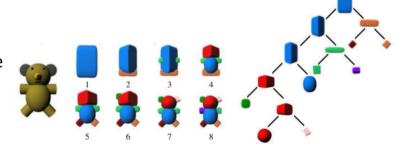
$$X(\eta,\omega) = \begin{pmatrix} a_1 \cos^{\varepsilon_1}(\eta) \cos^{\varepsilon_2}(\omega) \\ a_2 \cos^{\varepsilon_1}(\eta) \sin^{\varepsilon_2}(\omega) \\ a_3 \sin^{\varepsilon_1}(\eta) \end{pmatrix}$$

$$f\ddot{u}r - \frac{\pi}{2} \le \eta < \frac{\pi}{2} \text{ und } -\pi \le \omega < \pi.$$

Die Parameter a_1, a_2, a_3 beschreiben die Größe der Superquadrik in Richtung der drei Raumachsen. Die Exponenten $\varepsilon_1, \varepsilon_2 \in [0,1]$ bestimmen die Schärfe des Kantenverlaufs.

C. Goldfeder, P. K. Allen, C. Lackner, and R. Pelossof, *Grasp Planning Via Decomposition Trees*, in IEEE Int. Conf. on Robotics and Automation (ICRA), 2007, pp. 4679–4684.

Greifplanung mit Superquadriken (II)



Objektdarstellung mit Superquadriken

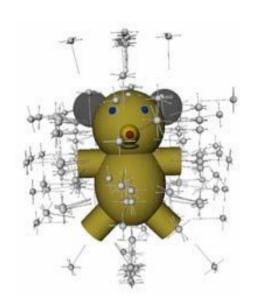
- Objektoberfläche wird als Punktwolke dargestellt
- Ermittle die Superquadrik, deren Oberfläche die Punktwolke am besten approximiert (Nichtlinearer Optimierungsalgorithmus, z.B. Levenberg-Marquardt)

Decomposition Tree

- Verfeinere die Approximation schrittweise
 - Suche Superquadrik mit größtem Fehler zur Punktwolke
 - Teile die zugehörige Punktwolke
 - Erstelle zwei neue Superquadriken
- Speichere Resultate für jeden Approximationsschritt im Decomposition Tree

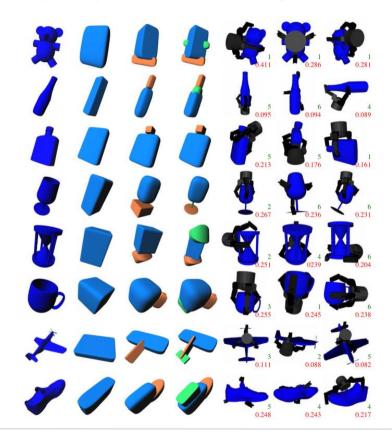
Superquadriken von 8 Dekompositions-schritten

Decomposition Tree

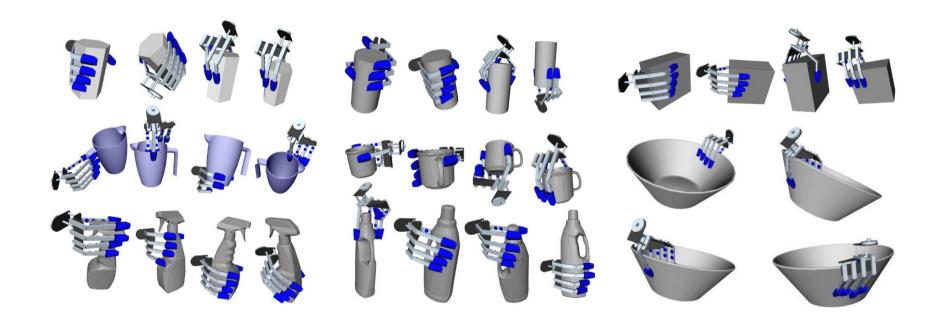


Greifplanung mit Superquadriken (III)

Greifplanung


- Für jede Superquadrik werden **Griffhypothesen** erzeugt. Gleichverteilte Anfahrtspunkte und Anfahrtsrichtungen relative zur Oberfläche der entsprechenden Superquadrik
- Evaluation der Griffhypothesen mittels GWS-Ansätzen. Detailliertes Objektmodell (3D Mesh)
- Für alle Ebenen des Decomposition Trees: Greifplanung auf groben sowie feinen Strukturen des Objektes

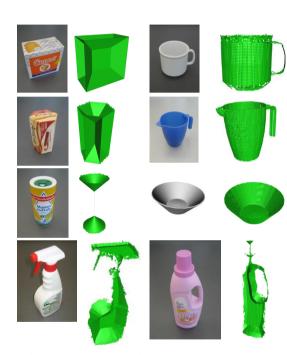
Greifplanung mit Superquadriken – Ergebnisse



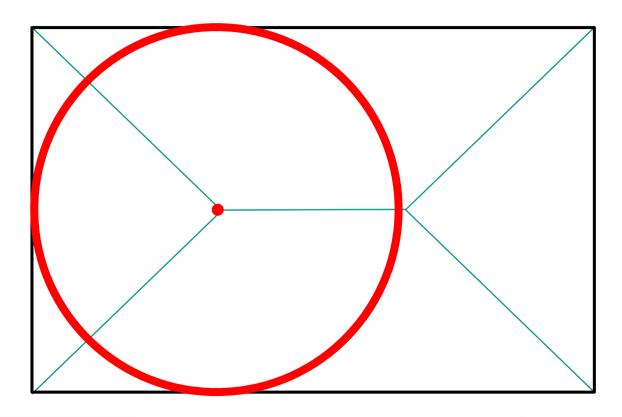
Griffplanung mit Medialen Achsen

Motivation

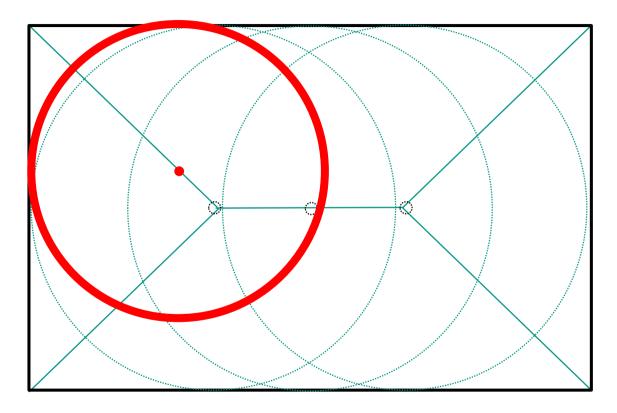
- Stand der Forschung: Algorithmen zur Griffplanung in Simulationsumgebungen
 - Griffhypothesen werden auf Stabilität untersucht
 - Effizienz hängt von den Heuristiken zur Erzeugung von Griffhypothesen ab
- Ziel: Verbesserung der Effizienz von Griffplanungs-Algorithmen, indem nur "geometrisch sinnvolle" Griffe untersucht werden müssen
- Ansatz: Nutze lokale Symmetrien der Objektgeometrie.
 - Die Repräsentation des Objektes ist wichtig
 - Dreiecksnetz: Zu niedriges Abstraktionsniveau
 - Mediale Achse als Objektrepräsentation

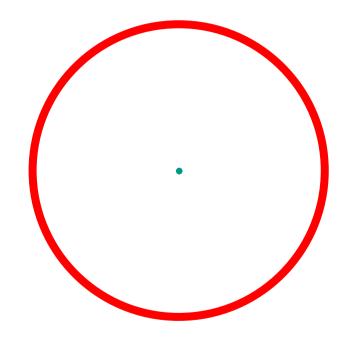

- Przybylski, M., Asfour, T. & Dillmann, R. Unions of Balls for Shape Approximation in Robot Grasping. 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2010
- Przybylski, M., Wächter, M., Asfour, T. & Dillmann, A Skeletonbased Approach to Grasp Known Objects with a Humanoid Robot, IEEE/RAS International Conference on Humanoid Robots (Humanoids), pp. 376 - 383, 2012

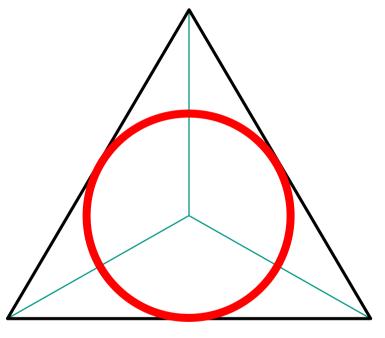
Griffplanung mit medialen Achsen


- Mediale Achse (Blum 1967)
 - Objektform wird approximiert über enthaltene Kugeln mit maximalem Durchmesser
 - Enthaltene Kugeln müssen die Objekthülle an mindestens zwei Punkten berühren
- Die mediale Achse ist definiert als die Vereinigung der Mittelpunkte aller enthaltenen Kugeln
- Die mediale Achse beschreibt das topologische Skelett des Objekts
- Vorteile:
 - Gute Approximation der Objektgeometrie
 - Details bleiben erhalten
 - Gute Beschreibung der Symmetrien

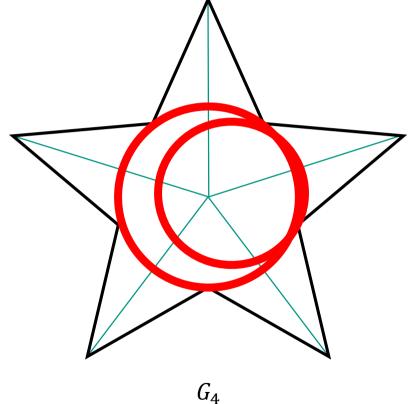
H. Blum, Models for the Perception of Speech and Visual Form. A transformation for extracting new descriptors of shape, Cambridge, Massachusetts: MIT Press, 1967, pp. 362–380.



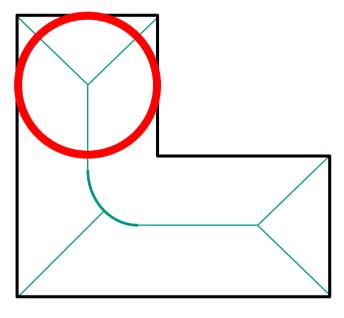


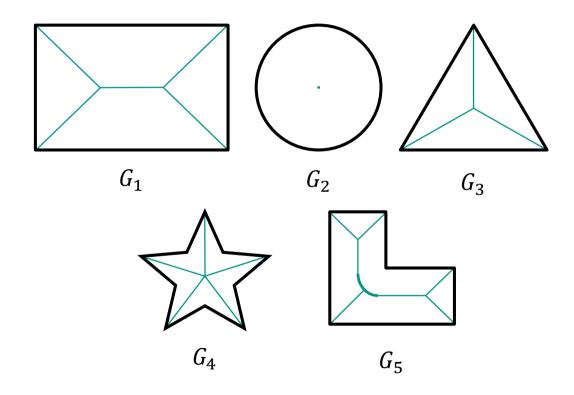


 G_2



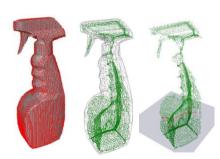
 G_3

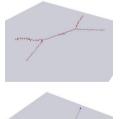




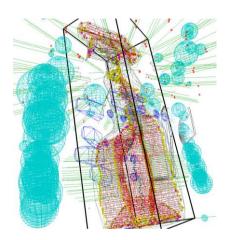
 G_5

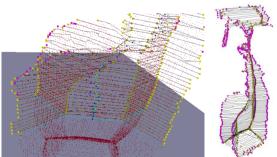
Beispiel: Mediale Achsen $G_1 \dots G_5$

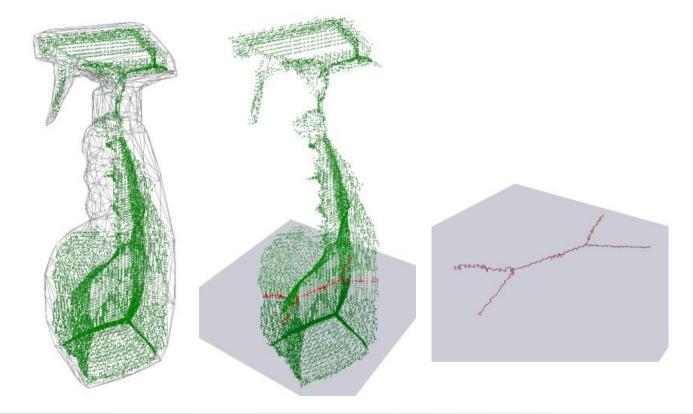




Griffplanung mit medialen Achsen – Algorithmus

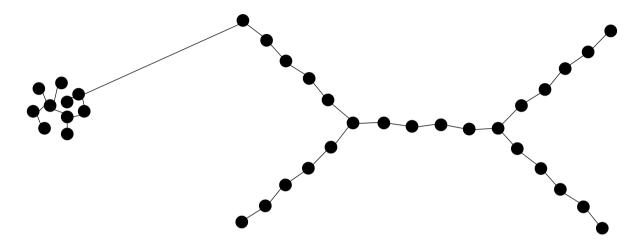



- 1. Abtasten der Objektoberfläche
- 2. Berechnen der medialen Achse
- 3. Analyse der Querschnitte der medialen Achse
 - Minimum Spanning Tree (MST)
 - Clustern
 - Konvexe Hülle
- Erzeuge Griffhypothesen
- Evaluiere Griffstabilität



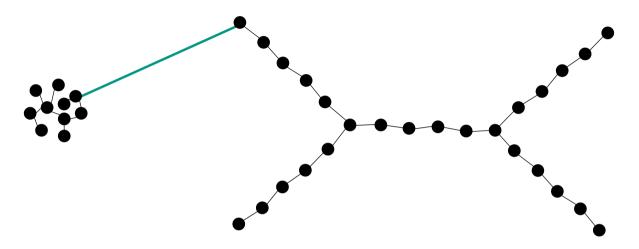
Analyse der Querschnitte der medialen Achse

Analyse eines Querschnitts der medialen Achse I



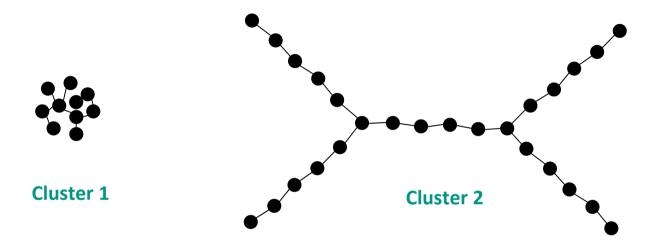
- Mediale Achse repräsentiert als Punktwolke
- Wir suchen die Nächste-Nachbarn-Beziehungen, Verzweigungspunkte
- Ansatz: Minimum Spanning Tree (MST)

Analyse eines Querschnitts der medialen Achse II



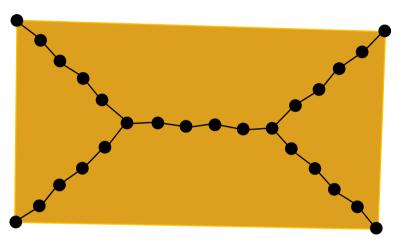
- Schritt 1: Bestimmung des MST
- Ergebnis: Alle Punkte sind mit ihren jeweils nächsten Nachbarn verbunden

Analyse eines Querschnitts der medialen Achse III

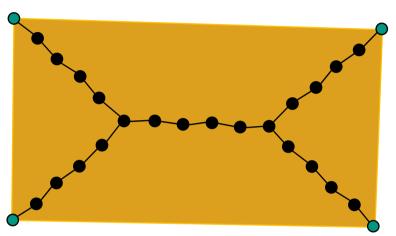


- lacktriangle Schritt 2: Entferne Kanten, die länger sind als ein Grenzwert d_{cut}
- Ergebnis: Unterteilung der medialen Achse in zusammengehörige Cluster

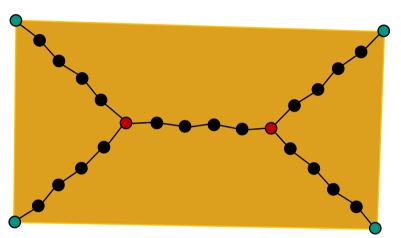
Analyse eines Querschnitts der medialen Achse III


- **Schritt 2**: Entferne Kanten, die länger sind als ein Grenzwert d_{cut}
- Ergebnis: Unterteilung der medialen Achse in zusammengehörige Cluster

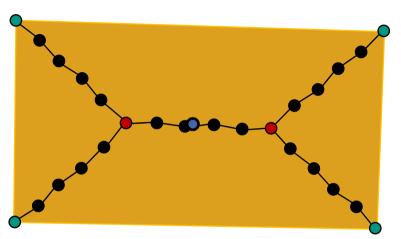
Analyse eines Querschnitts der medialen Achse IV


- Schritt 3: Berechne für jedes Cluster
 - Volumen der konvexen Hülle
 - Randpunkte der konvexen Hülle
 - Verzweigungspunkte des MST
 - Masseschwerpunkt

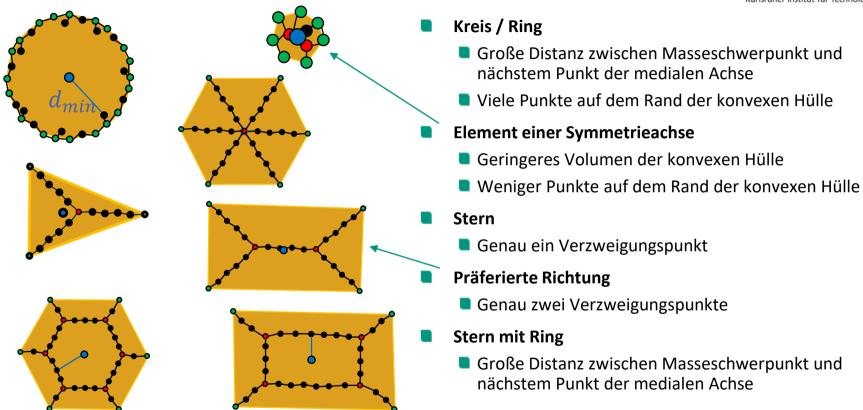
Analyse eines Querschnitts der medialen Achse V


- Schritt 3: Berechne für jedes Cluster
 - Volumen der konvexen Hülle
 - Randpunkte der konvexen Hülle
 - Verzweigungspunkte des MST
 - Masseschwerpunkt

Analyse eines Querschnitts der medialen Achse VI

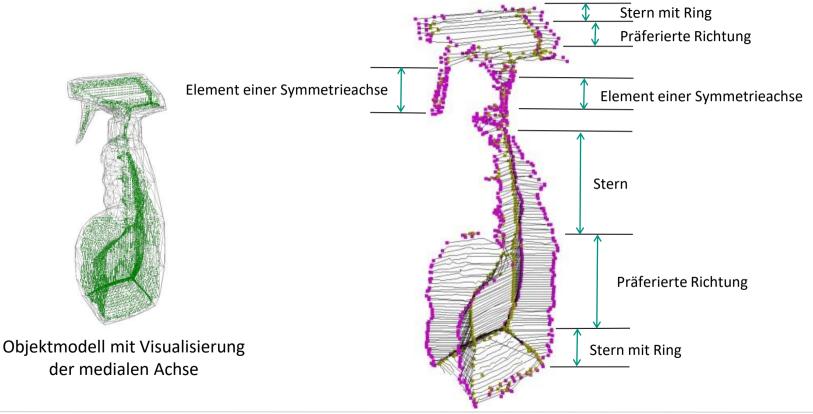

- Schritt 3: Berechne für jedes Cluster
 - Volumen der konvexen Hülle
 - Randpunkte der konvexen Hülle
 - Verzweigungspunkte des MST
 - Masseschwerpunkt

Analyse eines Querschnitts der medialen Achse VII

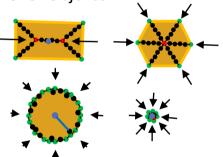


- Schritt 3: Berechne für jedes Cluster
 - Volumen der konvexen Hülle
 - Randpunkte der konvexen Hülle
 - Verzweigungspunkte des MST
 - Masseschwerpunkt

Analyse der gefundenen Cluster



Beispiel: Analyse der medialen Achse



Heuristiken zur Erzeugung von Griffhypothesen (I)

- Näherungsrichtung der Hand
 - Verzweigungspunkte des MST
 - Spitzen eines Sterns
 - Symmetrieachsen
 - Rand offener Objekte

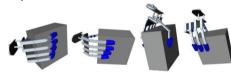
- Rollwinkel der Hand
 - Lokale Symmetrieachsen
 - Lokale Symmetrieebenen
- Für komplexere Objekte
 - Wende Kombination dieser Regeln an

Objekt

Heuristiken zur Erzeugung von Griffhypothesen (II)

Mediale Achse

Heuristik und Griffhypothesen



- Annähern an Verzweigungspunkte des MST
- Rollwinkel der Hand nach Symmetrieebenen ausrichten

- Annähern an Sternspitzen
- Rollwinkel der Hand nach Symmetrieebenen ausrichten

Heuristiken zur Erzeugung von Griffhypothesen (III)

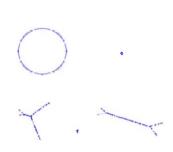
Mediale Achse

Querschnitt

Heuristik und Griffhypothesen

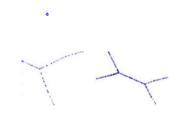
- Annähern an Kreis und Symmetrieachse aus verschiedenen Richtungen
- Rollwinkel der Hand nach Symmetrieachse ausrichten

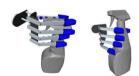
Objekte mit Öffnungen: Annähern an den Rand der Öffnung


Heuristiken zur Erzeugung von Griffhypothesen (IV)

Mediale Achse

Querschnitt


Heuristik und Griffhypothesen


 Komplexe Objekte: Kombination von Heuristiken

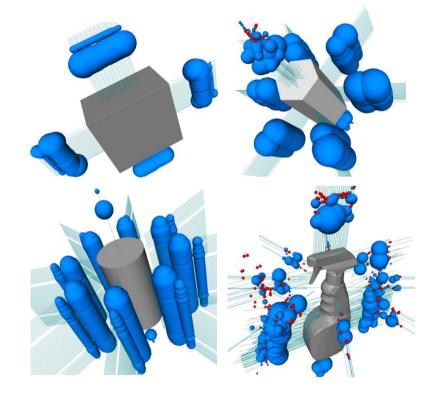
Heuristik zur Greifgenerierung (V)

Mediale Achse


Querschnitt

Heuristik und Griffhypothesen

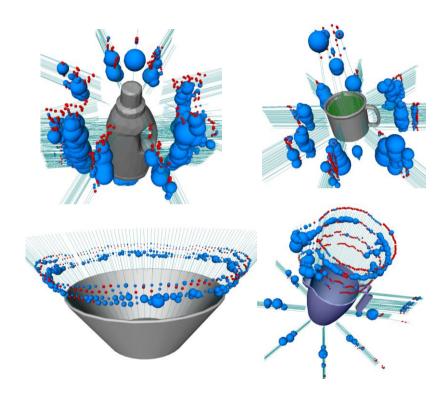
 Komplexe Objekte: Kombination von Heuristiken



Ergebnisse: Qualität des Griffs (Kraftschluss)

- Blaue Kugeln: stabile Griffe
- Rote Kugeln: instabile Griffe
- Position der Kugel:
 Position des Handgelenks
 während des Griffs

Durchmesser der Kugel:Maß für die Stabilität(Größte Kugel = stabilster Griff)



Ergebnisse: Qualität des Griffs (Kraftschluss)

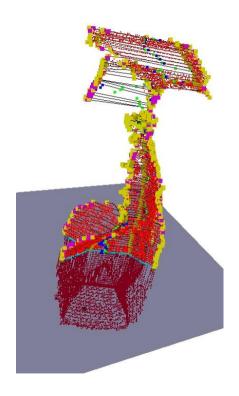
- Blaue Kugeln: stabile Griffe
- Rote Kugeln: instabile Griffe
- Position der Kugel:
 Position des Handgelenks
 während des Griffs

Durchmesser der Kugel:
 Maß für die Stabilität
 (Größte Kugel = stabilster Griff)

Ergebnisse: Effizienz

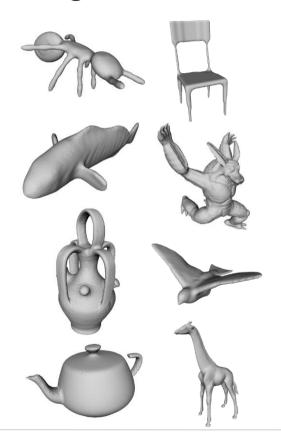
Karlsruher Institut für Technologie

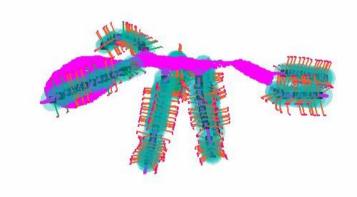
- Vergleich mit auf Flächennormalen basiertem Greifplaner [Berenson07]
 - Anzahl der generierten möglichen Griffe
 - Stabile Griffe
- Ergebnis:
 - Planung basierend auf medialer Achse ist effizienter


		MA-based planner		Surface normals planner	
	Objects	Candidates	Stable	Candidates	Stable
\longrightarrow	Bread box	632	86.2%	13440	15.5%
	Prismatic box	1344	90.7%	8512	36.0%
	Salt can	2144	96.9%	7904	45.7%
	Detergent	1996	65.9%	12672	26.2%
	Spray	1304	55.1%	11200	21.2%
	Cup	1428	59.5%	6688	37.0%
	Pitcher	1124	47.0%	15504	25.9%
\longrightarrow	Salad bowl	504	68.5%	13648	4.5%

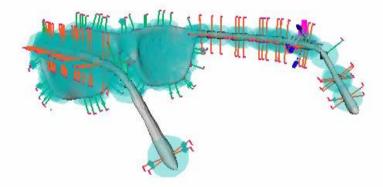
Zusammenfassung:

Karlsruher Institut für Technologie

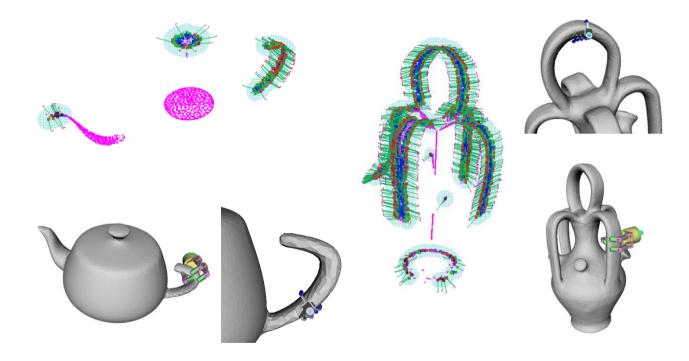

- Die mediale Achse enthält Informationen über Struktur und Geometrie des Objekts
- Generierung möglicher Griffe mit Heuristiken
 - Einbeziehung von Objektsymmetrie
 - Mögliche Griffe sind geometrisch "sinnvolle"
 - Hoher prozentualer Anteil von stabilen Griffen
 - Resultierende Griffe wirken "natürlich"
- Genaue Approximation der Objektgeometrie
 - Mögliche Griffe werden nicht durch eine schlecht approximierte Objektgeometrie beeinflusst
- Erweiterbares Konzept
 - Erweiterbarer Satz von Heuristiken um mögliche Griffe zur generieren



Erweiterungen



Erweiterungen



Mehr als 50% der Griffe sind kraftgeschlossen

Erweiterungen: Griffe an Griffen

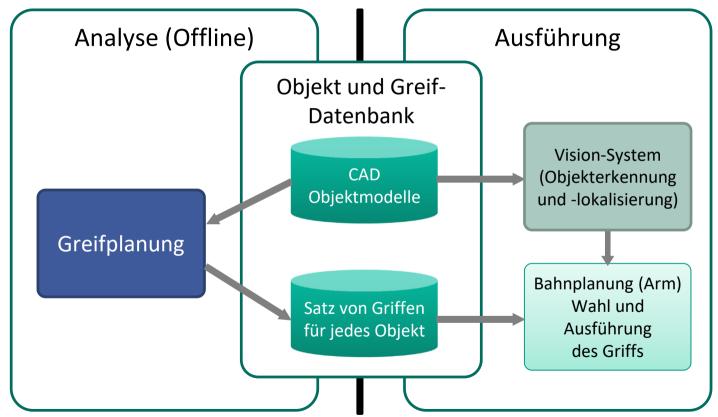
Inhalt

Motivation

Grifftaxonomien

- Kontaktmodelle und Grasp-Wrench-Space
- Greifplanung und Griffsynthese
- Beispiele: Greifen mit ARMAR

Greifen mit ARMAR



Die ARMAR-Grasping Pipeline (bekannte Objekte) Repräsentation des Greif-Objektdatenbank Roboterarbeitsraumes planung offline online Hand/Selbst-Ausführung lokalisierung Bewegungs-Objektdes Griffs adaption lokalisierung **Grasp Selection** Ausführung der Repräsentation Bewegungsder Szene & IK Solving Bewegung planung

ARMAR – Greifen bekannter Objekte

ARMAR – Objektrepräsentation

Objekte aus dem Haushalt

Representation	Source	Usage
Point cloud	Object Modeling Center	Grasping based on box decomposition
Triangle mesh	Point cloud, simplified	Collision detection and visualization
Textured mesh	Additional textures	Visualization (vision simulation possible)
Vision data	Real images, synthetic views	Object detection and localization

KIT Objektdatenbank

https://h2t-projects.webarchiv.kit.edu/Projects/ObjectModelsWebUI

- 3D Daten
 - Laserscanner Minolta "VI-900"
 - Aktive Triangulation
 - Auflösung: 640 x 480 Pixel
 - Genauigkeit: < 0.2 mm</p>
 - Verschiedene Formate / Auflösungen
- Farbbilder einer Stereokamera
 - Allied Vision Technologies "Marlin 145C2"
 - Auflösung: 1392 x 1038 Pixel
- XML Repräsentation
 - Metadaten
 - Parser

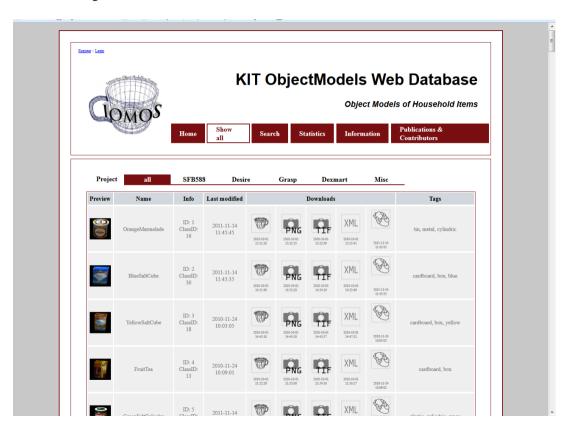
ARMAR – Objektmodellierung

Object Modeling Center

Raptor -Rapid Textured Object Generator

- Generierung von 3D-Punktwolken mit Laserscanner
- Nachverarbeitung mittels Triangulation in hochaufgelösten Dreiecksnetzen
- Speicherung in verschiedenen Formaten (Open Inventor, VRML, Wavefront)
- Generierung von verschiedenen
 Objektansichten mittels Stereokameras

Entwickelt im Sonderforschungsbereich 588 "Humanoide Roboter"


Web Datenbank

https://h2t-projects.webarchiv.kit.edu/Projects/ObjectModelsWebUI

KIT Object Models Database

YCB Benchmarks – Object and Model Set

Yale-CMU-Berkeley (YCB) Object and Model set https://www.ycbbenchmarks.com

Berk Calli, Aaron Walsman, Arjun Singh, Siddhartha Srinivasa, Pieter Abbeel, and Aaron M. Dollar, Benchmarking in Manipulation Research: The YCB Object and Model Set and Benchmarking Protocols, IEEE Robotics and Automation Magazine, pp. 36 – 52, Sept. 2015.

ARMAR – Offline Griffanalayse

Mögliche Griffe werden offline für jedes Objekt berechnet und zusammen mit dem Objekt gespeichert

- Definition eines Griffs:
 - Griffmittelpunkt auf dem Objekt an dem der Tool Center Point (TCP) ausgerichtet werden soll
 - Annäherungsvektor beschreibt den Winkel mit dem sich die Hand dem Griffmittelpunkt nähert
 - Orientierung des Handgelenks der Roboterhand
 - Initiale Fingerkonfiguration
- Evaluierung in Simulation

Grasp Center Point (GCP

Zylindrisch

Kugelförmig

Pinzettengriff

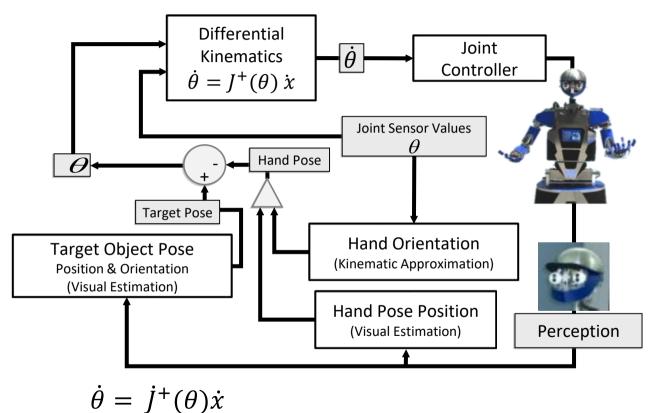
ARMAR - Objekterkennung und -lokalisierung

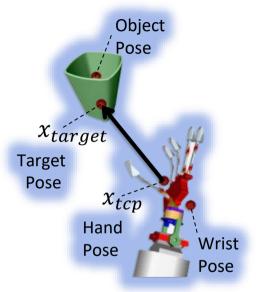
Farbige Objekte (IROS 2006, IROS 2009)

- Segmentierung nach Farbe
- Ansichtsbasierte Erkennung mit globalem Ansatz
- Modellbasierte Generierung der Ansichten
- Kombination von Stereo-Vision und gespeicherten
 Orientierungsinformationen für 6D Posenschätzung

Texturierte Objekte (Humanoids 2006, IROS 2009)

- Erkennung mittels lokaler Eigenschaften
- Berechnung von konsistenten Eigenschaften in Bezug auf die Objektpose mit Hough-Transformation
- 2D-Lokalisierung mit Bildpunktkorrespondenzen
- 6D-Posenschätzung mittels Stereo-Vision



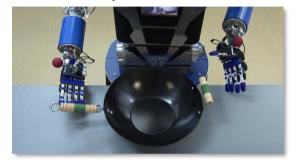

Korrespondenzen zwischen gelernter Ansicht und Ansicht in Szene

ARMAR – Ausführung: Positionsbasiertes Visual Servoing

$$\delta^{t} = x_{vision}^{t} - x_{kinematic}^{t}$$
$$x_{tcp}^{t+1} = x_{kinematic}^{t+1} + \delta_{tcp}^{t}$$

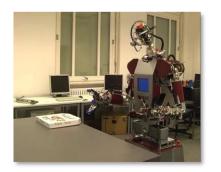
ARMAR-III in der RoboKITchen

45-minütige Aufgabe, mehr als 3100 Mal seit 3. Februar 2008



Fortgeschrittene Greiffähigkeiten

Zweihändiges (bimanual) Greifen und Manipulation



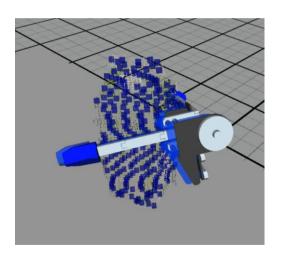
RAM 2012 IROS 2011 Humanoids 2010 Humanoids 2009 RAS 2008

Pre-Grasp Manipulation

Aufgabenspezifisches, Teilbasiertes Greifen

Ähnliche Objekte (familiar objects)

Vahrenkamp, N., Westkamp, L., Yamanobe, N., Aksoy, E. E. and Asfour, T., Part-based Grasp Planning for Familiar Objects, Humanoids 2016



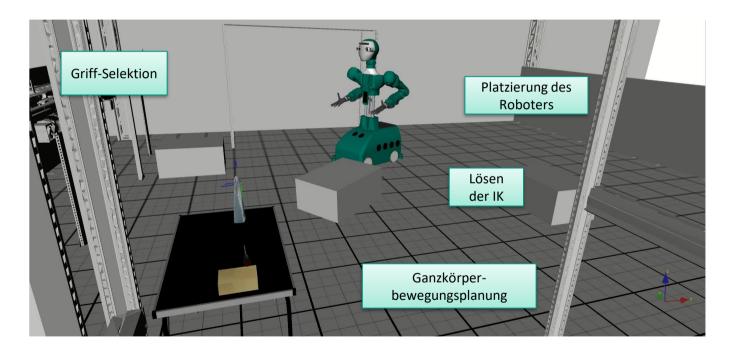
Greifen von Unbekannten Objekten (I)

- Tiefes CNN trainiert mit Tiefenbildern und 6D Griff-Informationen
- Während der Ausführung nur Tiefenbilder

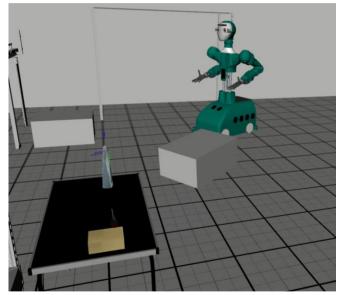
Schmidt, P., Vahrenkamp, N., Wächter, M. and Asfour, T., *Grasping of Unknown Objects using Deep Convolutional Neural Networks based on Depth Images*, ICRA 2018

Greifen von Unbekannten Objekten (II)

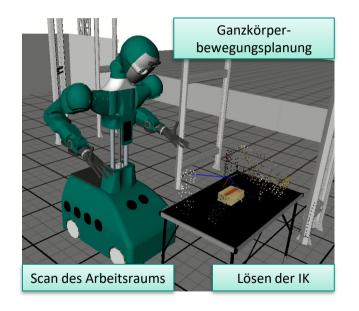
Aktive Wahrnehmung (active perception) zur Entdeckung, Segmentierung und Lernen von Objekten


Schiebener, D., Ude, A. and Asfour, T., *Physical Interaction for Segmentation of Unknown Textured and Non-textured Rigid Objects*, ICRA 2014

Grasping and Manipulation Pipeline: Methoden


Video zur Visualisierung verlangsamt

Ausführung in Bekannten Umgebungen





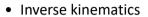
Ausführung in Teilweise Bekannten Umgebungen

Basierend auf Umgebungsmodellen und Punktwolken

Video zur Visualisierung verlangsamt

Verstehen von Perception-Action Relations

Affordanz-basierte Manipulation: Roboter muss Aktionen/ Interaktionsmöglichkeiten (Affordanzen) in unbekannten Umgebungen verstehen

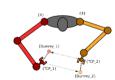

Pohl, C., Hitzler, K., Grimm, R., Zea, A., Hanebeck, U. D. and Asfour, T., *Affordance-Based Grasping and Manipulation in Real World Applications*, IROS 2020

Umgreifen, Übergabe

Select initial grasp

• RRT-connect

Re-grasp object



Grasp object

> Detect object pose in hand

 Online in-hand object tracking (dbot)

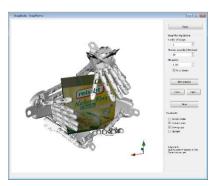
Calculate re-grasp pose Inverse kinematics with bi-manual pose constraint

Depth Based Object Tracking Library (dbot)

https://github.com/bayesian-object-tracking/dbot

Software

- Grasplt!
 - Entwickelt von Columbia University Robotics Group
 - C++ Source Code: http://graspit-simulator.github.io/


- Entwickelt von H2T, KIT
- C++ Source Code: https://gitlab.com/Simox/simox
- Dokumentation: https://gitlab.com/Simox/simox/wikis
- VirtualRobot: Robot Simulation
- Saba: Motion Planning Library
- GraspStudio: Grasp Planning Library

Vielen Dank!

- Greifen ist nach wie vor ein ungelöstes Problem in der Robotik
- Mehr zum Thema Greifen in der Vorlesung Robotik-II (SS)

ZUSATZMATERIAL

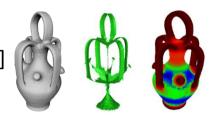
Medial Axis Planner: Limitations

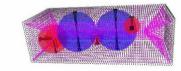
- Problems with slice structures
 - For complex objects, there are too many different kinds of slice structures, and each one has to be considered separately.
 - Too many parameters, heuristics, threshold constants...
- Better solution (Grid of medial spheres):
 - Consider complete medial axis transform (MAT = spheres including radii)
 - No slicing of the MA
 - Instead: Principal component analysis of sphere centers in a local environment around a query sphere
 - Only two cases for candidate grasp generation:
 - Spheres located on local symmetry axis → generate candidate grasps
 - \blacksquare Spheres located on the rim of local symmetry plane \rightarrow generate candidate grasps
 - Spheres located inside a local symmetry plane (not interesting for grasping)

Grid of medial spheres grasp planner

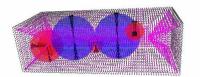
- Based on the medial axis transform
 - ⇒ Contains object's symmetry properties
- In addition: efficient access to spheres in local neighborhood (grid-based spatial indexing): $(i_n) = \frac{1}{(n_n(x-x_n))/(x_n-x_n)}$

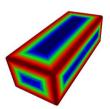
$$\begin{pmatrix} i_x \\ i_y \\ i_z \end{pmatrix} = \begin{pmatrix} \lfloor n_x(x - x_{min})/(x_{max} - x_{min}) \rfloor \\ \lfloor n_y(y - y_{min})/(y_{max} - y_{min}) \rfloor \\ \lfloor n_z(z - z_{min})/(z_{max} - z_{min}) \rfloor \end{pmatrix}$$

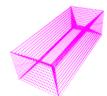

- Attributes of each sphere:
 - Center, radius, points where the sphere touches the object's surface
 - Object angle: maximum angle included by the sphere's center and two surface points touched by the sphere.
 - Example:
 - Blue spheres: object angle ~180°
 - Red spheres: object angle ~ 90°


Object representation for grasp planning

- Grid of medial spheres
 - Based on the Medial Axis Transform (MAT) [Blum67]
 - Contains object's symmetry properties
 - Additional: efficient access to spheres in local neighborhood
 - Attributes of each sphere:
 - Center
 - Radius
 - Points where the sphere touches the object's surface
 - Object angle: maximum angle defined by the sphere's center and two surface points touched by the sphere


Blue spheres: object angle ~180° Red spheres: object angle ~90°

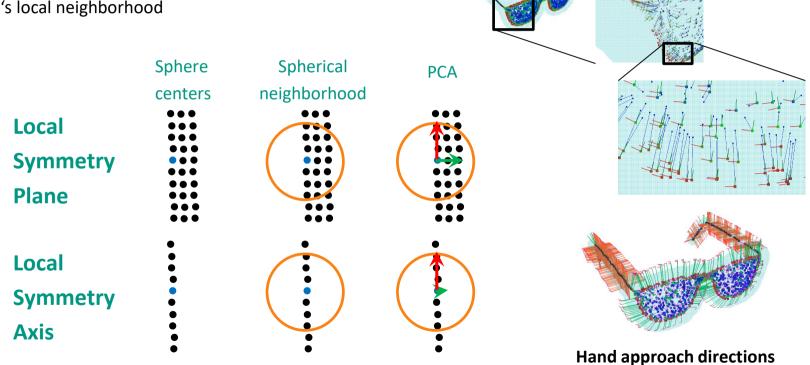

- Which spheres are important for grasp planning?
- Rough structure (occupied volume) vs. surface details of the object



- Goals:
 - Exploit local symmetry planes / axes for grasp planning
 - Generate grasps with two opposed virtual fingers
- Main parameters:
 - Object angle
 - Sphere radius
- Grasp planning:
 - Consider only spheres with object angle >= 120°
 - This removes edges and corners of the object
 - Symmetry planes and axes are preserved

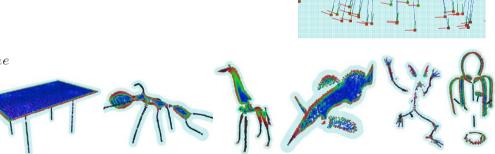
Grid of medial spheres

Medial Axis



Grasp Planning Algorithm Using MAT and PCA

Estimate symmetry properties of sphere centers in each sphere's local neighborhood

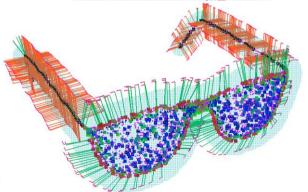

Analyzing an Object's Symmetry Properties

Estimate symmetry properties of sphere centers in each sphere's local
noighborhood

neighborhood

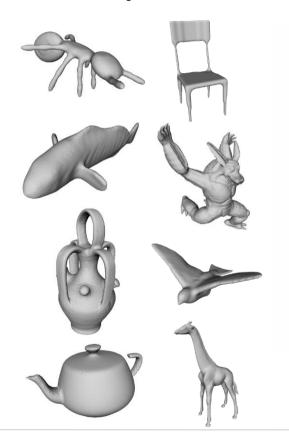
- Principal Component Analysis:
 - Directions of eigenvectors
 - Ratio of eigenvalues $ho_{ev}=rac{\lambda_2}{\lambda_1}$
- Classification of spheres:
 - On local symmetry axis $\rho_{ev} \leq \rho_{axis}$
 - On local symmetry plane
 - At the rim $\rho_{axis} \leq \rho_{ev} \leq \rho_{plane}$
 - Inside the plane $ho_{ev} >
 ho_{plane}$

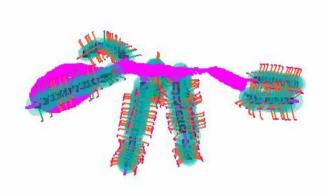



Generating Candidate Grasps

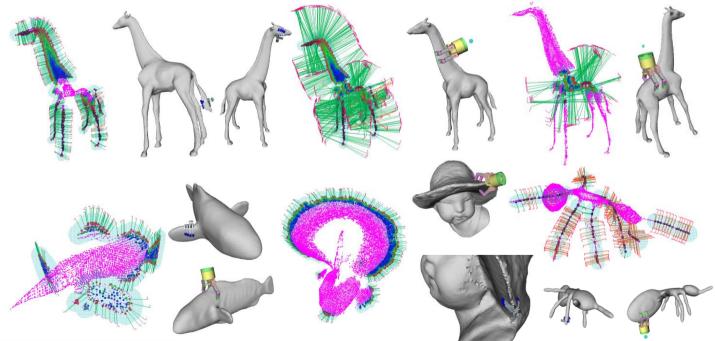
Karlsruher Institut für Technologie

- Symmetry axis
 - Hand approach directions perpendicular to local symmetry axes
- Rim of symmetry plane
 - Hand approach directions perpendicular to local symmetry planes



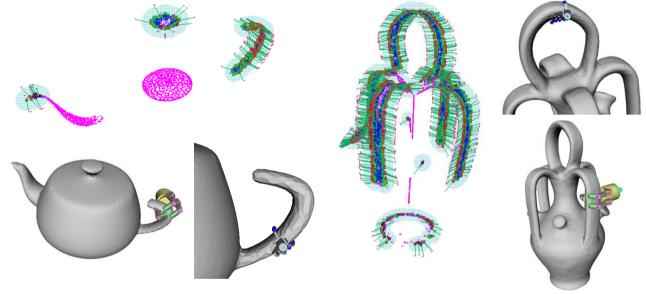


Candidate Grasps: Some Examples

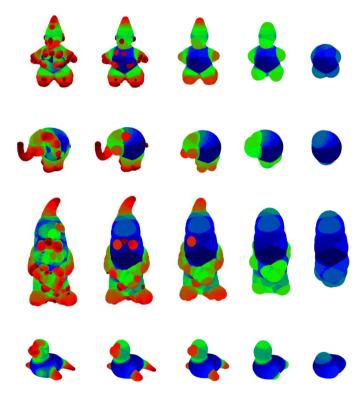


Advantages: Hand Size vs. Object Size

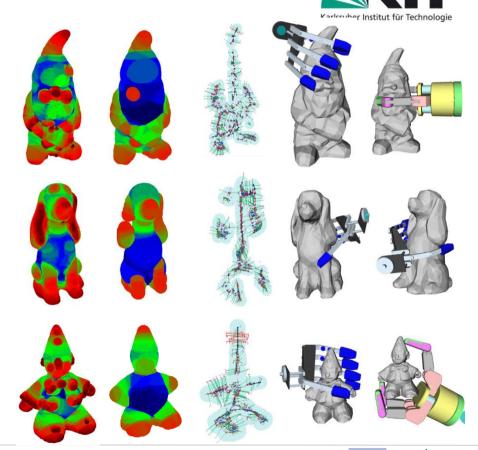
- Respect maximum sphere diameter graspable by the robot hand
- Optional: do not generate grasps for "small" spheres

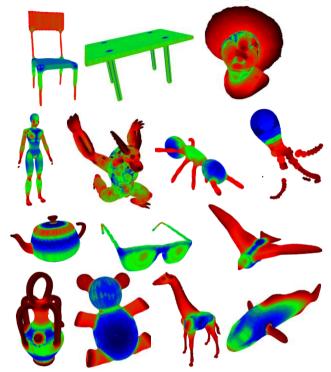


Advantages: Grasps on Handles

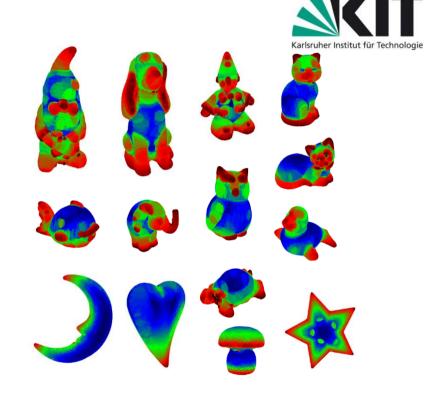

- For big objects, the algorithm finds many grasps at the handles
 - Simply due to geometric considerations, as the hollow bodies are too big to grasp
 - No semantic knowledge (task dependency) necessary

Dealing with Surface Details


- Surface details might disturb the planner.
 - Example: We don't want to plan grasps for the lawn gnome's nose.
- Solution: Discard small spheres and spheres with small object angles
 - Column 1: All spheres
 - Column 2: Only spheres with object angle $\geq 120^{\circ}$
 - In addition: Discard spheres with small radii compared to biggest sphere in the object:
 - Column 3: $r < 0.3 r_{max}$
 - Column 4: $r < 0.5 r_{max}$
 - Column 5: $r < 0.7 r_{max}$
 - $rac{1}{2}$ (r_{max} : Radius of the biggest sphere in the object)

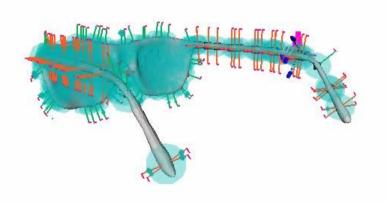

Advantages: Surface Details

- How to deal with surface details?
- Solution: discard "small" spheres
- Planner considers only rough geometry of the object



Object Sets for Testing

Chen Mesh Segmentation Benchmark [Chen2009]



Real objects

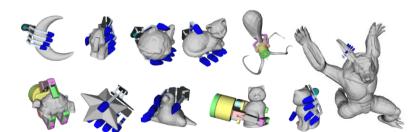
Force-Closure Testing

Chen benchmark

Real objects

Results

	ARMAR	-III hand	Barrett hand		
Objects	scale 1.0	scale 0.5	scale 1.0	scale 0.5	
1 Female doll	71.3%	54.6%	53.13%	37.9%	
41 Glasses	93.9%	7.8%	73.7%	10.7%	
81 Ant	94.4%	71.1%	61.3%	45.7%	
101 Chair	89.6%	49.2%	73.9%	72.2%	
125 Octopus	53.7%	55.2%	26.9%	44.7%	
141 Table	91.9%	92.5%	94.6%	85.0%	
161 Teddy	100.0%	83.3%	86.7%	51.2%	
225 Fish	76.5%	83.3%	68.4%	81.1%	
245 Bird	75.0%	68.3%	75.0%	65.6%	
290 Monster	70.5%	64.7%	67.8%	38.2%	
305 Bust	50.0%	70.0%	100.0%	92.9%	
361 Vase	76.8%	65.3%	69.6%	55.1%	
379 Tea kettle	78.9%	63.2%	75.7%	31.3%	
390 Giraffe	85.5%	68.3%	71.4%	56.0%	

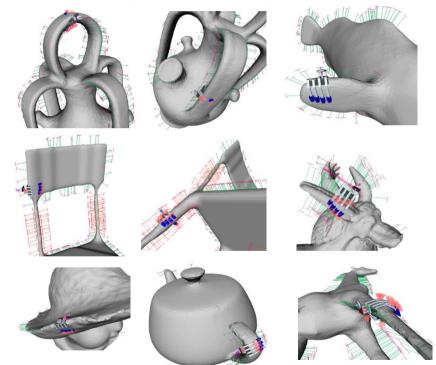

Objects	ARMAR-III hand	Barrett hand
1001 Clown	63.5%	61.2%
1002 Elefant	75.3%	76.0%
1003 Owl	78.0%	68.2%
1004 Spheric fish	59.0%	78.3%
1005 Lawn gnome	53.1%	57.7%
1006 Heart	89.0%	77.0%
1008 Dog	63.7%	69.2%
1009 Sitting cat	64.9%	59.5%
1010 Lying cat	80.7%	80.7%
1012 Moon	58.9%	64.4%
1013 Mushroom	80.0%	55.5%
1014 Turtle	57.1%	70.3%
1015 Seal (Seehund)	73.5%	59.2%
1016 Star	44.4%	66.7%

Experiments:

- Hand models: ARMAR-III, Barrett
- Object models:
 - Chen benchmark
 - 100% scaled objects
 - 50% scaled objects
 - Real objects

Results:

Most (> 50%) of the generated candidates are force-closure grasps

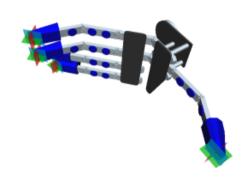


Results (Power Grasps for Big Objects)

Comparison to method based on surface normals [Berenson07]

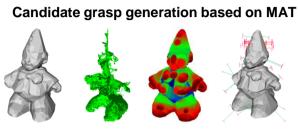
Planner type	MAT	Berenson [34]
$r_{o,min}$	0.0	n.a.
r_N	0.06m	n.a.
Glasses	67.1%	14.1%
Ant	95.3%	15.3%
Chair	88.0%	14.4%
Fish	57.3%	0.8 %
Bird	66.8%	2.7 %
Monster	63.0%	4.7 %
Bust	41.6%	0.0 %
Vase	75.7%	3.6 %
Tea kettle	87.5%	1.9 %
Giraffe	89.5%	20.0%
Average	73.2%	7.7 %

Summary


- Grid of medial spheres object representation:
 - Based on the medial axis transform
 - Volumetric approximation
 - Arbitrary level of detail
 - Symmetry properties as part of the object representation
- Grasp planning algorithm:
 - For arbitrarily shaped objects
 - Generates geometrically meaningful candidate grasps
 - Further advantages:
 - Hand size and object size considered
 - Grasps on handles simply due to geometric considerations
 - Surface details can be ignored, if necessary
 - High ratio of force-closure grasps

Planning precision grasps

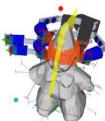
- Problem:
 - Planning precision grasps requires simultaneous determination of hand pose and finger joint angle
- Idea:
 - Define desired contact areas at fingertips
 - Preshape and first guess for hand pose based on:
 - Object symmetry information
 - Contact areas
 - Refine hand pose and configuration while closing the fingers

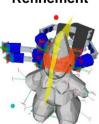


Algorithm: Planning precision grasps

- Generate candidate grasps using the Medial Axis Transform (MAT).
- 2. Compute preshape and first guess for hand pose:
 - Move hand to a configuration with initial opposition of predefined parallel contact areas.
 - Move the hand to the preshape configuration.
 - Extract grasp center transformation
 - Set hand to start pose
 - Discard candidate, if the hand is initially in collision with object.
- 3. Refinement of hand pose and configuration:
 - Close fingers, while maintaining parallel orientation of desired contact areas on the fingertips.
 - Compensate for translational fingertip movement by moving the TCP in the opposite direction.
- 4. Test for force-closure

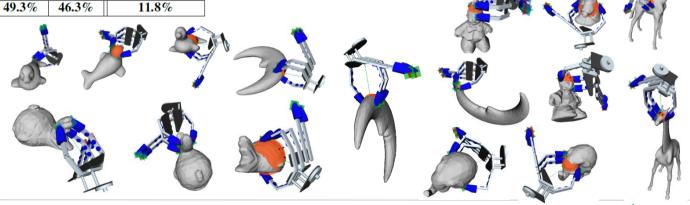
Initial opposition


Preshape

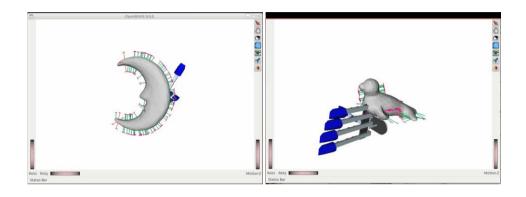


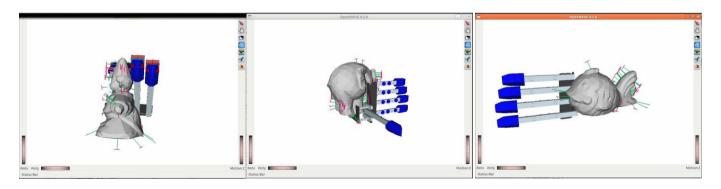
Start pose

Refinement

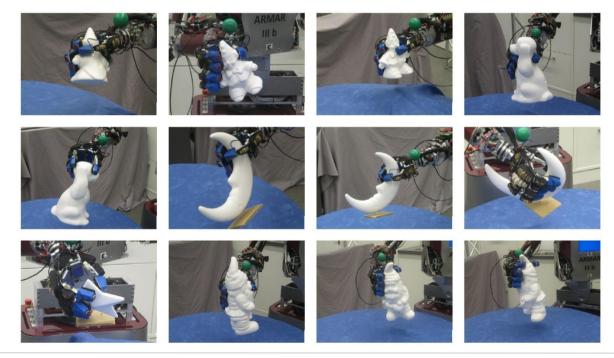


Results (Precision Grasps)


Comparison to method based on surface normals [Berenson07]


Planner type	MAT				Berenson [34]
$r_{o,min}$	0.0		$0.3r_{o,max}$		n.a.
r_N	0.01m	0.03m	0.01m	0.03m	n.a.
Clown	27.7%	15.8%	41.3%	29.9%	10.8%
Elefant	4.3 %	5.9 %	2.3 %	3.8 %	15.9%
Spheric fish	40.3%	24.7%	46.8%	29.6%	27.2%
Moon	83.0%	91.6%	84.2%	92.3%	5.3 %
Seal	59.8%	58.7%	67.1%	61.1%	10.8%
Glasses 25%	85.0%	88.7%	84.5%	88.7%	3.1 %
Giraffe 25%	36.1%	47.1%	19.0%	18.7%	9.4 %
Average	48.0%	47.5%	49.3%	46.3%	11.8%

Results (Precision Grasps) (II)



Execution on ARMAR-IIIb

